Skip to main content

The Energy Balance of Permafrost Soils and Ecosystems

  • Chapter
  • First Online:
Thawing Permafrost
  • 2539 Accesses

Abstract

Thawing of permafrost ice requires energy transfer from the atmosphere and solar radiation to the permafrost soil. Snow and vegetation dominate the energy exchange at the surface of permafrost soils. The radiation balance (shortwave and longwave radiation) is the primary source of energy. Only a small part of this energy is available for warming the ground. Which part, depends strongly on the surface cover. A snow cover reflects solar radiation. A vegetation cover shades the soil surface and returns energy to the atmosphere as latent heat (vaporisation of water) and sensible heat (warming of the air). In this chapter, the basic principles of the exchange of energy at the surface are discussed: the radiation balance, the exchange of energy by turbulence- driven latent and sensible heat fluxes. The partitioning of these fluxes throughout the season is shown based on examples. This chapter shows why snow cover has a warming effect on permafrost and vegetation has a cooling effect. Next, the heat transfer into the soil is discussed. Here, the role of latent heat of freezing and thawing and the thermal properties of the soil are important, which vary strongly with soil material and soil water content. Together with the snow and vegetation characteristics, these thermal properties determine soil temperature and the active layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AMAP (2015) AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP), 116 p

    Google Scholar 

  • AMAP (2017) Snow, water, ice and permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP), Oslo, p 269

    Google Scholar 

  • Anderson DM, Tice AR (1972) Predicting unfrozen water contents in frozen soils from surface area measurements. Highw Res Rec 393:12–18

    Google Scholar 

  • Anisimov O, Nelson F (1997) Influence of climate change on permafrost in the Northern Hemisphere. Russ Meteorol Hydrol 5:47–53

    Google Scholar 

  • Arp CD, Jones BM, Urban FE, Grosse G (2011) Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska. Hydrol Process 25(15):2422–2438

    Article  Google Scholar 

  • Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, p 438

    Book  Google Scholar 

  • Balland V, Arp PA (2005) Modeling soil thermal conductivities over a wide range of conditions. J Environ Eng Sci 4:549–558

    Article  Google Scholar 

  • Bartelt P, Lehning M (2002) A physical SNOWPACK model for the Swiss avalanche warning: part I: numerical model. Cold Reg Sci Technol 35(3):123–145

    Article  Google Scholar 

  • Beringer J, Chapin FS, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric For Meteorol 131(3):143–161

    Article  Google Scholar 

  • Biskaborn BK, Lanckman J-P, Lantuit H, Elger K, Dmitry S, William C, Vladimir R (2015) The new database of the global terrestrial network for permafrost (GTN-P). Earth Syst Sci Data 7:245–259

    Article  Google Scholar 

  • Blok D, Heijmans MM, Schaepman-Strub G, Kononov A, Maximov T, Berendse F (2010) Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol 16(4):1296–1305

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, van Ruijven J, Parmentier FJW, Maximov TC, Berendse F (2011) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14(7):1055–1065. https://doi.org/10.1007/s10021-011-9463-5

    Article  Google Scholar 

  • Boike J, Wille C, Abnizova A (2008) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113(G3). https://doi.org/10.1029/2007jg000540

  • Boike J, Langer M, Lantuit H, Muster S, Roth K, Sachs T, Overduin P, Westermann S, McGuire AD (2012) Permafrost–physical aspects, carbon cycling, databases and uncertainties. In: Recarbonization of the biosphere. Springer, Dordrecht, pp 159–185

    Chapter  Google Scholar 

  • Boike J, Georgi C, Kirilin G, Muster S, Abramova K, Fedorova I, Chetverova A, Grigoriev M, Bornemann N, Langer M (2015) Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia). Biogeosciences 12(20):5941–5965. https://doi.org/10.5194/bg-12-5941-2015

    Article  Google Scholar 

  • Bokhorst S, Pedersen SH, Brucker L, Anisimov O, Bjerke JW, Brown RD, Ehrich D, Essery RL, Heilig A, Ingvander S (2016) Changing Arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45(5):516–537

    Article  Google Scholar 

  • Bonan G (2002) Ecological climatology: concepts and applications. 1st edn. Cambridge University Press

    Google Scholar 

  • Bonan G (2016) Ecological climatology: concepts and applications. 3d edn. Cambridge University Press, Cambridge. 754 p

    Book  Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359(6397):716–718

    Article  Google Scholar 

  • Budishchev AVHJ, Parmentier FJW, Maximov TC, Dolman AJ (in prep) Using machine learning algorithms to impute energy and carbon eddy covariance flux measurements. to be submitted to JGR Biogeosciences

    Google Scholar 

  • Burba G (2013) Eddy covariance method for scientific, industrial, agricultural and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates. LI-COR Biosciences, Lincoln

    Google Scholar 

  • Burba GG, McDermitt DK, Grelle A, Anderson DJ, Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Glob Chang Biol 14(8):1854–1876

    Article  Google Scholar 

  • Chadburn S, Burke E, Essery R, Boike J, Langer M, Heikenfeld M, Cox P, Friedlingstein P (2015) An improved representation of physical permafrost dynamics in the JULES land-surface model. Geosci Model Dev 8(5):1493–1508

    Article  Google Scholar 

  • De Vries DA (1987) The theory of heat and moisture transfer in porous media revisited. Int J Heat Mass Transf 30(7):1343–1350

    Article  Google Scholar 

  • Dutra E, Balsamo G, Viterbo P, Miranda PM, Beljaars A, Schär C, Elder K (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol 11(4):899–916

    Article  Google Scholar 

  • Dutra E, Viterbo P, Miranda PM, Balsamo G (2012) Complexity of snow schemes in a climate model and its impact on surface energy and hydrology. J Hydrometeorol 13(2):521–538

    Article  Google Scholar 

  • Eaton AK, Rouse WR, Lafleur PM, Marsh P, Blanken PD (2001) Surface energy balance of the western and Central Canadian subarctic: variations in the energy balance among five major terrain types. J Clim 14(17):3692–3703

    Article  Google Scholar 

  • Ekici A, Chadburn S, Chaudhary N, Hajdu L, Marmy A, Peng S, Boike J, Burke E, Friend A, Hauck C (2015) Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. Cryosphere 9:1343–1361

    Article  Google Scholar 

  • Elumeeva TG, Soudzilovskaia NA, During HJ, Cornelissen JH (2011) The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. J Veg Sci 22(1):152–164

    Article  Google Scholar 

  • Essery R, Pomeroy J (2004) Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an Arctic tundra basin. J Hydrometeorol 5(5):735–744

    Article  Google Scholar 

  • Eugster W, Rouse WR, Pielke RA Sr, Mcfadden JP, Baldocchi DD, Kittel TG, Chapin FS, Liston GE, Vidale PL, Vaganov E (2000) Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob Chang Biol 6(S1):84–115

    Article  Google Scholar 

  • Euskirchen E, McGuire A, CHAPIN III F (2007) Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Glob Chang Biol 13(11):2425–2438

    Article  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin. 306 p

    Google Scholar 

  • Froese DG, Westgate JA, Reyes AV, Enkin RJ, Preece SJ (2008) Ancient permafrost and a future, warmer Arctic. Science 321(5896):1648–1648

    Article  Google Scholar 

  • Gornall J, Jónsdóttir I, Woodin S, Van der Wal R (2007) Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153(4):931–941

    Article  Google Scholar 

  • Grace J, Allen S, Wilson C (1989) Climate and the meristem temperatures of plant communities near the tree-line. Oecologia 79(2):198–204

    Article  Google Scholar 

  • Hinkel KM, Hurd JK Jr (2006) Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, USA. Arct Antarct Alp Res 38(4):530–539

    Article  Google Scholar 

  • Hoekstra P (1966) Moisture movement in soils under temperature gradients with the cold-side temperature below freezing. Water Resour Res 2(2):241–250

    Article  Google Scholar 

  • Iwahana G, Machimura T, Kobayashi Y, Fedorov AN, Konstantinov PY, Fukuda M (2005) Influence of forest clear-cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia. J Geophys Res Biogeo 110(G2):G02004. https://doi.org/10.1029/2005JG000039

    Article  Google Scholar 

  • Jammet M, Crill P, Dengel S, Friborg T (2015) Large methane emissions from a subarctic lake during spring thaw: mechanisms and landscape significance. J Geophys Res Biogeo 120(11):2289–2305. https://doi.org/10.1002/2015jg003137

    Article  Google Scholar 

  • Johansson M, Callaghan TV, Bosiö J, Åkerman HJ, Jackowicz-Korczynski M, Christensen TR (2013) Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ Res Lett 8(3):035025. https://doi.org/10.1088/1748-9326/8/3/035025

    Article  Google Scholar 

  • Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33(2):L02503. https://doi.org/10.1029/2005gl024960

    Article  Google Scholar 

  • Juszak I, Erb AM, Maximov TC, Schaepman-Strub G (2014) Arctic shrub effects on NDVI, summer albedo and soil shading. Remote Sens Environ 153:79–89

    Article  Google Scholar 

  • Juszak I, Eugster W, Heijmans MM, Schaepman-Strub G (2016) Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences 13:4049–4064

    Article  Google Scholar 

  • Juszak I, Iturrate-Garcia M, Gastellu-Etchegorry J-P, Schaepman ME, Maximov TC, Schaepman-Strub G (2017) Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sens Environ 193:86–102

    Article  Google Scholar 

  • Kasurinen V, Alfredsen K, Kolari P, Mammarella I, Alekseychik P, Rinne J, Vesala T, Bernier P, Boike J, Langer M, Belelli Marchesini L, van Huissteden K, Dolman H, Sachs T, Ohta T, Varlagin A, Rocha A, Arain A, Oechel W, Lund M, Grelle A, Lindroth A, Black A, Aurela M, Laurila T, Lohila A, Berninger F (2014) Latent heat exchange in the boreal and arctic biomes. Glob Chang Biol 20(11):3439–3456. https://doi.org/10.1111/gcb.12640

    Article  Google Scholar 

  • Kholodov A, Gilichinsky D, Ostroumov V, Sorokovikov V, Abramov A, Davydov S, Romanovsky V (2012) Regional and local variability of modern natural changes in permafrost temperature in the Yakutian coastal lowlands, Northeastern Siberia. In: Proceedings of the Tenth International Conference on Permafrost, Salekhard, Yamal-Nenets Autonomous District, Russia, 2012. pp 25–29

    Google Scholar 

  • Kitover D, Renssen H, Van Balen R, Vandenberghe J (2012) Modeling permafrost response of the last glacial termination: first results of the VAMPER model. In: Tenth International Conference on Permafrost, 2012. pp 209–214

    Google Scholar 

  • Kitover D, Balen R, Roche D, Vandenberghe J, Renssen H (2013) New estimates of permafrost evolution during the last 21 k years in Eurasia using numerical modelling. Permafr Periglac Process 24(4):286–303

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Bound-Layer Meteorol 99(2):207–224

    Article  Google Scholar 

  • Kudryavtsev V, Garagulya L, Melamed V (1977) Fundamentals of frost forecasting in geological engineering investigations (Osnovy Merzlotnogo Prognoza pri Inzhenerno-Geologicheskikh Issledovaniyakh). Corps of Engineers, US Army, Cold Regions Research and Engineering Lab, Hanover NH USA, 489 p

    Google Scholar 

  • Kuipers Munneke P, Van den Broeke M, Lenaerts J, Flanner M, Gardner A, Van de Berg W (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J Geophys Res Atmos 116(D5):D05114. https://doi.org/10.1029/2010JD015113

    Article  Google Scholar 

  • Kurylyk BL (2015) Discussion of ‘a simple thaw-freeze algorithm for a multi-layered soil using the Stefan Equation’by Xie and Gough (2013). Permafr Periglac Process 26(2):200–206

    Article  Google Scholar 

  • Kurylyk BL, Watanabe K (2013) The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils. Adv Water Resour 60:160–177

    Article  Google Scholar 

  • Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234:689–697

    Article  Google Scholar 

  • Langer M, Westermann S, Muster S, Piel K, Boike J (2011a) The surface energy balance of a polygonal tundra site in northern Siberia-part 1: spring to fall. Cryosphere 5(1):151–171. https://doi.org/10.5194/tc-5-151-2011

    Article  Google Scholar 

  • Langer M, Westermann S, Muster S, Piel K, Boike J (2011b) The surface energy balance of a polygonal tundra site in Northern Siberia – part 2: winter. Cryosphere 5(2):509–524. https://doi.org/10.5194/tc-5-509-2011

    Article  Google Scholar 

  • Lehning M, Bartelt P, Brown B, Fierz C (2002a) A physical SNOWPACK model for the Swiss avalanche warning: part III: meteorological forcing, thin layer formation and evaluation. Cold Reg Sci Technol 35(3):169–184

    Article  Google Scholar 

  • Lehning M, Bartelt P, Brown B, Fierz C, Satyawali P (2002b) A physical SNOWPACK model for the Swiss avalanche warning: part II. Snow microstructure. Cold Reg Sci Technol 35(3):147–167

    Article  Google Scholar 

  • Liljedahl A, Hinzman L, Harazono Y, Zona D, Tweedie C, Hollister RD, Engstrom R, Oechel W (2011) Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8(11):3375

    Article  Google Scholar 

  • Ling F, Zhang T (2003) Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res 108(D16):4511. https://doi.org/10.1029/2002JD003014

    Article  Google Scholar 

  • Loranty MM, Goetz SJ, Beck PS (2011) Tundra vegetation effects on pan-Arctic albedo. Environ Res Lett 6(2):024014. https://doi.org/10.1088/1748-9326/6/2/024014

    Article  Google Scholar 

  • Lunardini V (1978) Theory of n-factors and correlation of data. In: Proceedings of the Third International Conference on Permafrost, 1978. National Research Council of Canada Ottawa, pp 40–46

    Google Scholar 

  • Lunardini VJ (1981) Heat transfer in cold climates. Van Nostrand Reinhold Company, 731 p

    Google Scholar 

  • Lund M, Hansen BU, Pedersen SH, Stiegler C, Tamstorf MP (2014) Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010. Tellus B: Chem Phys Meteorol 66(1):21631. https://doi.org/10.3402/tellusb.v66.21631

    Article  Google Scholar 

  • Matsumoto K, Ohta T, Nakai T, Kuwada T, Daikoku K, Iida S, Yabuki H, Kononov AV, van der Molen MK, Kodama Y (2008) Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agric For Meteorol 148(12):1978–1989

    Article  Google Scholar 

  • Matyshak G, Goncharova OY, Moskalenko N, Walker D, Epstein H, Shur Y (2017) Contrasting soil thermal regimes in the Forest-tundra transition near Nadym, West Siberia, Russia. Permafr Periglac Process 28(1):108–118

    Article  Google Scholar 

  • McFadden JP, Chapin FS III, Hollinger DY (1998) Subgrid-scale variability in the surface energy balance of arctic tundra. J Geophys Res Atmos 103(D22):28947–28961

    Article  Google Scholar 

  • McFadden JP, Eugster W, Chapin FS (2003) A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology 84(10):2762–2776

    Article  Google Scholar 

  • Ménégoz M, Krinner G, Balkanski Y, Cozic A, Boucher O, Ciais P (2013) Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century. Cryosphere 7(2):537–554

    Article  Google Scholar 

  • Mi Y, van Huissteden J, Parmentier FJW, Gallagher A, Budishchev A, Berridge CT, Dolman AJ (2014) Improving a plot-scale methane emission model and its performance at a northeastern Siberian tundra site. Biogeosciences 11(14):3985–3999. https://doi.org/10.5194/bg-11-3985-2014

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):045509

    Article  Google Scholar 

  • Nauta AL, Heijmans MMPD, Blok D, Limpens J, Elberling B, Gallagher A, Li B, Petrov RE, Maximov TC, van Huissteden J, Berendse F (2014) Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat Clim Chang 5(1):67–70. https://doi.org/10.1038/nclimate2446

    Article  Google Scholar 

  • Ohta T, Maximov TC, Dolman AJ, Nakai T, van der Molen MK, Kononov AV, Maximov AP, Hiyama T, Iijima Y, Moors EJ (2008) Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agric For Meteorol 148(12):1941–1953

    Article  Google Scholar 

  • Osterkamp TE (2005) The recent warming of permafrost in Alaska. Glob Planet Chang 49(3):187–202

    Article  Google Scholar 

  • Osterkamp T, Gosink JP (1991) Variations in permafrost thickness in response to changes in Paleoclimate. J Geophys Res 96(B3):4423–4434

    Article  Google Scholar 

  • Osterkamp TE, Payne MW (1981) Estimates of permafrost thickness from well logs in northern Alaska. Cold Reg Sci Technol 5(1):13–27

    Article  Google Scholar 

  • Oswald CJ, Rouse WR (2004) Thermal characteristics and energy balance of various-size Canadian Shield lakes in the Mackenzie River Basin. J Hydrometeorol 5:129–144

    Article  Google Scholar 

  • Pinzer B, Schneebeli M, Kaempfer T (2012) Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography. Cryosphere 6(5):1141–1155. https://doi.org/10.5194/tc-6-1141-2012

    Article  Google Scholar 

  • Porada P, Ekici A, Beer C (2016) Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. Cryosphere 10(5):2291–2315. https://doi.org/10.5194/tc-10-2291-2016

    Article  Google Scholar 

  • Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E (2011) Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ Model Softw 26(11):1325–1336

    Article  Google Scholar 

  • Romanovsky V, Osterkamp T (1997) Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafr Periglac Process 8(1):1–22

    Article  Google Scholar 

  • Romanovsky V, Osterkamp T (2000) Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafr Periglac Process 11(3):219–239

    Article  Google Scholar 

  • Romanovsky V, Burgess M, Smith S, Yoshikawa K, Brown J (2002) Permafrost temperature records: indicators of climate change. EOS Trans Am Geophys Union 83(50):589–594

    Article  Google Scholar 

  • Saito K, Yamaguchi S, Iwata H, Harazono Y, Kosugi K, Lehning M, Shulski M (2012) Climatic physical snowpack properties for large-scale modeling examined by observations and a physical model. Pol Sci 6(1):79–95

    Article  Google Scholar 

  • Sazonova T, Romanovsky V (2003) A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafr Periglac Process 14(2):125–139

    Article  Google Scholar 

  • Serreze MC, Barry RG (2014) The Arctic climate system. Cambridge University Press, Cambridge. 385 p

    Book  Google Scholar 

  • Smith M, Riseborough D (1996) Permafrost monitoring and detection of climate change. Permafr Periglac Process 7(4):301–309

    Article  Google Scholar 

  • Smith M, Riseborough D (2002) Climate and the limits of permafrost: a zonal analysis. Permafr Periglac Process 13(1):1–15

    Article  Google Scholar 

  • Soudzilovskaia NA, Bodegom PM, Cornelissen JH (2013) Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct Ecol 27(6):1442–1454

    Article  Google Scholar 

  • Spence C, Rouse WR, Worth D, Oswald CJ (2003) Energy budget processes of a small northern lake. J Hydrometeorol 4:694–701

    Article  Google Scholar 

  • Stefan J (1891) Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann Phys 278(2):269–286

    Article  Google Scholar 

  • Stevens CW, Moorman BJ, Solomon SM (2010) Modeling ground thermal conditions and the limit of permafrost within the nearshore zone of the Mackenzie Delta, Canada. J Geophys Res Earth 115:F4

    Google Scholar 

  • Stiegler C, Johansson M, Christensen TR, Mastepanov M, Lindroth A (2016) Tundra permafrost thaw causes significant shifts in energy partitioning. Tellus B: Chem Phys Meteorol 68(1):30467

    Article  Google Scholar 

  • Stieglitz M, Déry S, Romanovsky V, Osterkamp T (2003) The role of snow cover in the warming of arctic permafrost. Geophys Res Lett 30(13):1721. https://doi.org/10.1029/2003GL017337

    Article  Google Scholar 

  • Sturm M, Holmgren J, McFadden JP, Liston GE, Chapin FS III, Racine CH (2001) Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J Clim 14(3):336–344

    Article  Google Scholar 

  • Sturm M, Douglas T, Racine C, Liston GE (2005) Changing snow and shrub conditions affect albedo with global implications. J Geophys Res Biogeo 110(G1):G01004. https://doi.org/10.1029/2005JG000013

    Article  Google Scholar 

  • Szewczyk J, Nawrocki J (2011) Deep-seated relict permafrost in northeastern Poland. Boreas 40(3):385–388

    Article  Google Scholar 

  • Tanaka H, Hiyama T, Kobayashi N, Yabuki H, Ishii Y, Desyatkin RV, Maximov TC, Ohta T (2008) Energy balance and its closure over a young larch forest in eastern Siberia. Agric For Meteorol 148(12):1954–1967

    Article  Google Scholar 

  • Thompson C, Beringer J, Chapin F III, McGuire A (2004) Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest. J Veg Sci 15(3):397–406

    Article  Google Scholar 

  • Van der Molen M, Van Huissteden J, Parmentier F, Petrescu A, Dolman A, Maximov T, Kononov A, Karsanaev S, Suzdalov D (2007) The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4(6):985–1003. https://doi.org/10.5194/bg-4-985-2007

    Article  Google Scholar 

  • Van Huissteden J, Vandenberghe J, Pollard D (2003) Palaeotemperature reconstructions of the European permafrost zone during marine oxygen isotope stage 3 compared with climate model results. J Quat Sci 18(5):453–464. https://doi.org/10.1002/jqs.766

    Article  Google Scholar 

  • Vionnet V, Brun E, Morin S, Boone A, Faroux S, Le Moigne P, Martin E, Willemet J (2012) The detailed snowpack scheme Crocus and its implementation in SURFEX v7. 2. Geosci Model Dev 5:773–791

    Article  Google Scholar 

  • West J, Plug LJ (2008) Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J Geophys Res Earth 113(F1):F01009. https://doi.org/10.1029/2006JF000696

    Article  Google Scholar 

  • Westermann S, Lüers J, Langer M, Piel K, Boike J (2009) The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway. Cryosphere 3(2):245–263

    Article  Google Scholar 

  • Williams PJ, Smith MW (1991) The frozen earth. Fundamentals of geocryology. Cambridge University Press, Cambridge. 306 p

    Google Scholar 

  • Wilson J (2015) Computing the flux footprint. Boundary Layer Meteorol 156:1–14. https://doi.org/10.1007/s10546-015-0017-9

    Article  Google Scholar 

  • WMO (2008) Guide to Meteorological Instruments and Methods of Observation (CIMO Guide). vol WMO-No. 8

    Google Scholar 

  • Woo M-K (2012) Permafrost hydrology. Springer, Berlin. 563 p

    Book  Google Scholar 

  • Yosida Z (1955) Physical studies on deposited snow. I.; thermal properties. Contrib Inst Low Temp Sci 7:19–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Huissteden, J. (2020). The Energy Balance of Permafrost Soils and Ecosystems. In: Thawing Permafrost. Springer, Cham. https://doi.org/10.1007/978-3-030-31379-1_2

Download citation

Publish with us

Policies and ethics