Skip to main content

Scalable Hypothesis Tests for Detection of Epileptic Seizures

  • Conference paper
  • First Online:
Computational Statistics and Mathematical Modeling Methods in Intelligent Systems (CoMeSySo 2019 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1047))

Included in the following conference series:

Abstract

Epilepsy is a disease that affects a large part of the population and the monitoring of the cerebral electrical activity using Electroencephalogram sensors provides a real time graphical representation of the brain function that can be used to detect the epileptic seizures. The detection of epileptic seizures is challenging because the brain activity is very complex, unique for each person and can not be completely captured even though the technology advanced very much in the last years and the sensors that capture this data are very complex in the present. In this research article the detection of epileptic seizures is approached using a machine learning methodology that is based on a combination of some of the latest technological advancements in the fields of big data and machine learning in which the features are extracted using a method based on scalable hypothesis tests and then the data is predicted using three machine learning classifiers namely, AdaBoost, Gradient Boosted Trees and Random Forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raghu, S., Sriraam, N., Kumar, G.P., Hegde, A.S.: A novel approach for real-time recognition of epileptic seizures using minimum variance modified fuzzy entropy. IEEE Trans. Biomed. Eng. 65(11), 2612–2621 (2018). https://doi.org/10.1109/TBME.2018.2810942

    Article  Google Scholar 

  2. Thijs, R.D., Surges, R., O’Brien, T.J., Sander, J.W.: Epilepsy in adults. Lancet 393(10172), 689–701 (2019). https://doi.org/10.1016/S0140-6736(18)32596-0

    Article  Google Scholar 

  3. Fisher, R.S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J.H., Elger, C.E., Engel Jr., J., Forsgren, L., French, J.A., Glynn, M., Hesdorffer, D.C., Lee, B.I., Mathern, G.W., Moshe, S.L., Perucca, E., Scheffer, I.E., Tomson, T., Watanabe, M., Wiebe, S.: ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55(4), 475–482 (2014). https://doi.org/10.1111/epi.12550

    Article  Google Scholar 

  4. Fisher, R.S., Vickrey, B.G., Gibson, P., Hermann, B., Penovich, P., Scherer, A., Walker, S.: The impact of epilepsy from the patients perspective I. Descriptive and subjective perceptions. Epilepsy Res. 41(1), 39–51 (2000). https://doi.org/10.1016/S0920-1211(00)00126-1

    Article  Google Scholar 

  5. Netoff, T., Park, Y., Parhi, K.: Seizure prediction using cost-sensitive support vector machine. In: Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, pp. 3322–3325 (2009). https://doi.org/10.1109/IEMBS.2009.5333711

  6. Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130(2), 314–333 (2007). https://doi.org/10.1093/brain/awl241

    Article  Google Scholar 

  7. Bhattacharyya, S., Biswas, A., Mukherjee, J.: Feature selection for automatic burst detection in neonatal electroencephalogram. IEEE J. Emerg. Sel. Topics Circ. Syst. 1(4), 469–479 (2011). https://doi.org/10.1109/JETCAS.2011.2180834

    Article  Google Scholar 

  8. Johnson, E.L.: Seizures and epilepsy. Med. Clin. N. Am. 103(2), 309–324 (2019). https://doi.org/10.1016/j.mcna.2018.10.002

    Article  Google Scholar 

  9. Fisher, R.S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., Engel Jr., J.: Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 46(4), 470–472 (2005). https://doi.org/10.1111/j.0013-9580.2005.66104.x

    Article  Google Scholar 

  10. Jackson, A., Teo, L., Seneviratne, U.: Challenges in the first seizure clinic for adult patients with epilepsy. Epileptic Disord. 18(3), 305–314 (2016). https://doi.org/10.1684/epd.2016.0853

    Article  Google Scholar 

  11. Islam, M.K., Rastegarnia, A., Yang, Z.: A wavelet-based artifact reduction from scalp EEG for epileptic seizure detection. IEEE J. Biomed. Health Inform. 20(5), 1321–1332 (2016). https://doi.org/10.1109/JBHI.2015.2457093

    Article  Google Scholar 

  12. Esbroeck, A.V., Smith, L., Syed, Z., Singh, S., Karam, Z.: Multi-task seizure detection: addressing intra-patient variation in seizure morphologies. Mach. Learn. 102(3), 309–321 (2016). https://doi.org/10.1007/s10994-015-5519-7

    Article  MathSciNet  Google Scholar 

  13. Sriraam, N., Raghu, S.: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier. J. Med. Syst. 41(10), 160 (2017). https://doi.org/10.1007/s10916-017-0800-x

    Article  Google Scholar 

  14. Zhou, W., Liu, Y., Yuan, Q., Li, X.: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans. Biomed. Eng. 60(12), 3375–3381 (2013). https://doi.org/10.1109/TBME.2013.2254486

    Article  Google Scholar 

  15. Srinivasan, V., Eswaran, C., Sriraam, N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005). https://doi.org/10.1007/s10916-005-6133-1

    Article  Google Scholar 

  16. Srinivasan, V., Eswaran, C., Sriraam, N.: Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 11(3), 288–295 (2007). https://doi.org/10.1109/TITB.2006.884369

    Article  Google Scholar 

  17. Aarabi, A., Fazel-Rezai, R., Aghakhani, Y.: A fuzzy rule-based system for epileptic seizure detection in intracranial EEG. Clin. Neurophysiol. 120(9), 1648–1657 (2009). https://doi.org/10.1016/j.clinph.2009.07.002

    Article  Google Scholar 

  18. Parvez, M.Z., Paul, M.: Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation. IEEE Trans. Neural Syst. Rehabil. Eng. 24(1), 158–168 (2016). https://doi.org/10.1109/TNSRE.2015.2458982

    Article  Google Scholar 

  19. Rasekhi, J., Mollaei, M.R.K., Bandarabadi, M., Teixeira, C.A., Dourado, A.: Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods. J. Neurosci. Methods 217(1–2), 9–16 (2013). https://doi.org/10.1016/j.jneumeth.2013.03.019

    Article  Google Scholar 

  20. Mirowski, P., Madhavan, D., LuCun, Y., Kuzniecky, R.: Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009). https://doi.org/10.1016/j.clinph.2009.09.002

    Article  Google Scholar 

  21. Li, S., Zhou, W., Yuan, Q., Liu, Y.: Seizure prediction using spike rate of intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 880–886 (2013). https://doi.org/10.1109/TNSRE.2013.2282153

    Article  Google Scholar 

  22. Siuly, Li, Y.: A novel statistical algorithm for multiclass EEG signal classification. Eng. Appl. Artif. Intell. 34(1), 154–167 (2014). https://doi.org/10.1016/j.engappai.2014.05.011

    Article  Google Scholar 

  23. Ubeyli, E.D.: Decision support systems for time-varying biomedical signals: EEG signals classification. Expert Syst. Appl. 36(2), 2275–2284 (2009). https://doi.org/10.1016/j.eswa.2007.12.025

    Article  Google Scholar 

  24. Kabir, E., Siuly, Zhang, Y.: Epileptic seizure detection from EEG signals using logistic model trees. Brain Inform. 3(2), 93–100 (2016). https://doi.org/10.1007/s40708-015-0030-2

    Article  Google Scholar 

  25. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59(1–2), 161–205 (2005). https://doi.org/10.1007/s10994-005-0466-3

    Article  MATH  Google Scholar 

  26. Yin, X., Ng, B.W.-H., Fischer, B.M., Ferguson, B., Abbott, D.: Support vector machine applications in terahertz pulsed signals feature sets. IEEE Sens. J. 7(12), 1597–1608 (2007). https://doi.org/10.1109/JSEN.2007.908243

    Article  Google Scholar 

  27. Le Cessie, S., Van Houwelingen, J. C.: Ridge estimators in logistic regression. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 41(1), 191–201 (1992). https://doi.org/10.2307/2347628

    Article  Google Scholar 

  28. Chengsheng, T., Bing, X., Huacheng, L.: The application of the adaboost algorithm in the text classification. In: Proceedings of the 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, pp. 1792–1796 (2018). https://doi.org/10.1109/IMCEC.2018.8469497

  29. Sakata, R., Ohama, I., Taniguchi, T.: An extension of gradient boosted decision tree incorporating statistical tests. In: Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, Singapore, pp. 964–969 (2018). https://doi.org/10.1109/ICDMW.2018.00139

  30. Feng, Z., Mo, L., Li, M.: A random forest-based ensemble method for activity recognition. In: Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, pp. 5074–5077 (2015). https://doi.org/10.1109/EMBC.2015.7319532

  31. Dua, D., Karra Taniskidou, E.: UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/index.php

  32. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(1), 1–8 (2001). https://doi.org/10.1103/PhysRevE.64.061907

    Article  Google Scholar 

  33. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series feature extraction on basis of scalable hypothesis tests (tsfresh - a Python package). Neurocomputing. 307(1), 72–77 (2018). https://doi.org/10.1016/j.neucom.2018.03.067

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Moldovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moldovan, D. (2019). Scalable Hypothesis Tests for Detection of Epileptic Seizures. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Computational Statistics and Mathematical Modeling Methods in Intelligent Systems. CoMeSySo 2019 2019. Advances in Intelligent Systems and Computing, vol 1047. Springer, Cham. https://doi.org/10.1007/978-3-030-31362-3_16

Download citation

Publish with us

Policies and ethics