Skip to main content

Beyond Refugia: New Insights on Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South America

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Abstract

Haffer’s (Science 165: 131–137, 1969) Pleistocene refuge theory has provided motivation for 50 years of investigation into the connections between climate, biome dynamics, and neotropical speciation, although aspects of the original theory are not supported by subsequent studies. Recent advances in paleoclimatology suggest the need for reevaluating the role of Quaternary climate on evolutionary history in tropical South America. In addition to the many repeated large-amplitude climate changes associated with Pleistocene glacial-interglacial stages (~40 kyr and 100 kyr cyclicity), we highlight two aspects of Quaternary climate change in tropical South America: (1) an east-west precipitation dipole, induced by solar radiation changes associated with Earth’s precessional variations (~20 kyr cyclicity); and (2) periods of anomalously high precipitation that persisted for centuries-to-millennia (return frequencies ~1500 years) congruent with cold “Heinrich events” and cold Dansgaard-Oeschger “stadials” of the North Atlantic region. The spatial footprint of precipitation increase due to this North Atlantic forcing extended across almost all of tropical South America south of the equator. Combined, these three climate modes present a picture of climate change with different spatial and temporal patterns than envisioned in the original Pleistocene refuge theory.

Responding to these climate changes, biomes expanded and contracted and became respectively connected and disjunct. Biome change undoubtedly influenced biotic diversification, but the nature of diversification likely was more complex than envisioned by the original Pleistocene refuge theory. In the lowlands, intermittent forest expansion and contraction led to species dispersal and subsequent isolation, promoting lineage diversification. These pulses of climate-driven biotic interchange profoundly altered the composition of regional species pools and triggered new evolutionary radiations. In the special case of the tropical Andean forests adjacent to the Amazon lowlands, new phylogenetic data provide abundant evidence for rapid biotic diversification during the Pleistocene. During warm interglacials and interstadials, lowland taxa dispersed upslope. Isolation in these disjunct climate refugia led to extinction for some taxa and speciation for others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absy ML, Cleef A, Fornier M, Servant M, Siffedine A, Da Silva MF, Soubies F, Suguio K, Turcq B, Van der Hammen T (1991) Mise en evidence de quatre phases d’ouverture de la foret dense dans le sud-est de L’Amazonie au cours des 60,000 dernieres annees. Premiere comparaison avec d'autres regions tropicales. C R Acad Sci II 312:673–678

    Google Scholar 

  • Adeney JM, Christensen NL, Vicentini A, Cohn-Haft M (2016) White-sand ecosystems in Amazonia. Biotropica 48:7–23

    Google Scholar 

  • Antonelli A, Nylander JAA, Persson C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci U S A 106:9749–9754. https://doi.org/10.1073/pnas.0811421106

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018) Amazonia is the primary source of Neotropical biodiversity. Proc Natl Acad Sci U S A 115:6034–6039. https://doi.org/10.1073/pnas.1713819115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arz HW, Patzold J, Wefer G (1998) Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-Glacial marine deposits off Northeastern Brazil. Quat Res 50:157–166

    CAS  Google Scholar 

  • Asner GP, Anderson CB, Martin RE, Tupayachi R, Knapp DE, Sinca F (2015) Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nat Geosci 8:567–573

    CAS  Google Scholar 

  • Baker PA, Fritz SC (2015) Nature and causes of Quaternary climate variation of tropical South America. Quat Sci Rev 124:31–47

    Google Scholar 

  • Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove M, Tapia P, Cross S, Rowe H, Broda J (2001a) The history of South American tropical climate for the past 25,000 years. Science 291:640–643

    CAS  PubMed  Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein T, Bacher N, Veliz Y (2001b) Tropical climate changes at millennial and orbital timescales revealed by deep drilling on the South American Altiplano. Nature 409:698–701

    CAS  PubMed  Google Scholar 

  • Baker PA, Fritz SC, Dick CW, Eckert AJ, Horton BK, Manzoni S, Ribas CC, Garzione CN, Battisti DS (2014) The emerging field of geogenomics: constraining geologic problems with genetic data. Earth Sci Rev 135:38–47

    Google Scholar 

  • Batalha-Filho H, Fjelsa J, Fabre P-H, Yumi C (2013) Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J Ornithol 154:41–50

    Google Scholar 

  • Behling H, Arz HW, Patzold J, Wefer G (2000) Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1. Quat Sci Rev 19:981–994

    Google Scholar 

  • Berry PE, Riina R (2005) Insights into the diversity of the Pantepui Flora and the biogeographic complexity of the Guayana Shield. Biologiske Skrifter 5:145–167

    Google Scholar 

  • Black DE, Peterson LT, Overpeck JT, Kaplan A, Evans MN, Kashgarian M (1999) Eight centuries of North Atlantic Ocean atmosphere variability. Science 286:1709–1713

    CAS  PubMed  Google Scholar 

  • Bouimetarhan I, Chiessi C, Gonzalez-Arango CG, Dupont L, Voigt I, Prange M, Zonneveld K (2018) Intermittent development of forest corridors in northeastern Brazil during the last deglaciation: climatic and ecologic evidence. Quat Sci Rev 192:86–96

    Google Scholar 

  • Broecker WS (1994) Massive iceberg discharges as triggers for global climate change. Nature 372:421–424

    CAS  Google Scholar 

  • Burbridge RE, Mayle FE, Killeen TJ (2004) Fifty-thousand year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat Res 61:215–230

    Google Scholar 

  • Bush MB (1994) Amazonian speciation: a necessarily complex model. J Biogeogr 21:5–18

    Google Scholar 

  • Bush MB, De Oliveira PE, Colinvaux PA, Miller MC, Moreno JE (2004) Amazonian paleoecological histories: one hill, three watersheds. Palaeogeogr Palaeoclimatol Palaeoecol 214:359–393

    Google Scholar 

  • Byrne H, Rylands AB, Carneiro JC, Alfaro JWL, Bertuol F, Silva MNF, Messias M, Groves CP, Mittermeier RA, Farias I, Hrbek T, Schneider H, Sampaio I, Boubli JP (2016) Phylogenetic relationships of the New World titi monkeys (Callicebus): first appraisal of taxonomy based on molecular evidence. Front Zool 13:10. https://doi.org/10.1186/s12983-016-0142-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capurucho JMG, Cornelius C, Borges SH, Cohn-Haft M, Aleixo A, Metzger JP, Ribas CC (2013) Combining phylogeography and landscape genetics of Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene landscape evolution in Amazonia. Biol J Linn Soc 110:60–76

    Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    CAS  PubMed  Google Scholar 

  • Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkowski CR, Bornschein MR, Ribero LF, Moritz C (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc B 281:20141461

    PubMed  Google Scholar 

  • Cheng H, Sinha A, Cruz FW, Wang X, Edwards LR, d’Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4:1411

    PubMed  Google Scholar 

  • Colinveaux PA, DeOlivera PE, Moreno JE, Miller MC, Bush MB (1996) A long pollen record from lowland Amazonia: forest cooling in Glacial times. Science 274:85–88

    Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86

    Google Scholar 

  • Cross S, Baker P, Seltzer G, Fritz S, Dunbar R (2001) Late Quaternary climate and hydrology of tropical South America inferred from an isotopic and chemical model of Lake Titicaca, Bolivia and Peru. Quat Res 56:1–9

    CAS  Google Scholar 

  • Cruz FWJ, Burns SJ, Karmann I, Sharp WD, Vuille M, Cardoso AO, Ferrari JA, Silva Dias PL, Viana OJ (2005) Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66

    CAS  PubMed  Google Scholar 

  • Cruz FW, Vuille M, Burns SJ, Wang X, Cheng H, Werner M, Edwards RL, Karmann I, Auler AS, Nguyen H (2009) Orbitally driven east-west anti-phasing of South American precipitation. Nat Geosci 2:210–214

    CAS  Google Scholar 

  • D’Apolito CD, Absy ML, Latrubesse EM (2017) The movement of pre-adapted cool taxa in north-central Amazonia during the last glacial. Quat Sci Rev 169:1–12

    Google Scholar 

  • Dal-Vechio F, Prates I, Grazziotin FG, Zaher H, Rodrigues MT (2018) Phylogeography and historical demography of the arboreal pit viper Bothrops bilineatus (Serpentes, Crotalinae) reveal multiple connections between Amazonian and Atlantic rainforests. J Biogeogr 45:2415–2426

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gunderstrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjirnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-year ice core record. Nature 364:218–220

    Google Scholar 

  • Dexter KG, Lavin M, Torke BM, Twyford AD, Kursar TA, Coley PD, Drake C, Hollands R, Pennington RT (2017) Dispersal assembly of rain forest tree communities across the Amazon basin. Proc Natl Acad Sci U S A 114:2645–2650. https://doi.org/10.1073/pnas.1613655114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont L, Schlutz F, Ewah CT, Jennerjahn TC, Pal A, Behling H (2010) Two-step vegetation response to enhanced precipitation in Northeast Brazil during Heinrich event 1. Glob Chang Biol 16:1647–1660

    Google Scholar 

  • Erkens RHJ, Chatrou LW, Maas JW (2007) A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. Mol Phylogenet Evol 44:399–411. https://doi.org/10.1016/j.ympev.2007.02.017

    Article  CAS  PubMed  Google Scholar 

  • Esquivel-Muelbert A, Baker TR, Dexter KG (2019) Compositional response of Amazon forests to climate change. Glob Chang Biol 25:39–56

    PubMed  Google Scholar 

  • Fritz SC, Baker PA, Seltzer GO, Ballantyne A, Tapia P, Cheng H, Edwards L (2007) Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quat Res 68:410–420

    Google Scholar 

  • Fritz SC, Baker PA, Ekdahl E, Seltzer GO, Stevens LR (2010) Millennial-scale climate variability during the Last Glacial period in the tropical Andes. Quat Sci Rev 29:1017–1024

    Google Scholar 

  • Garzón-Orduña IJ, Benetti Longhini JE, Brower AVZ (2014) Timing the diversification of the Amazonian biota: butterfly divergences are consistent with Pleistocene refugia. J Biogeogr 41:1631–1638

    Google Scholar 

  • Gentry A (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America. Pleistocene climatic fluctuations or an accident of Andean orogeny? Ann Mo Bot Gard 69:557–593

    Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    CAS  PubMed  Google Scholar 

  • Hemming SR (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42(1):RG1005

    Google Scholar 

  • Hermanowski B, Lima da Costa M, Carvalho AT, Behling H (2012) Palaeoenvironmental dynamics and underlying climatic changes in southeast Amazonia (Serra Sul dos Carajas, Brazil) during the late Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:227–246

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartin I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Sarkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    CAS  PubMed  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci 103:10334–10339

    CAS  PubMed  Google Scholar 

  • Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proc Natl Acad Sci 110(28):E2602–E2610

    CAS  PubMed  Google Scholar 

  • Kanner LC, Burns SJ, Cheng H, Edwards RL (2012) High-latitude forcing of the South American Summer Monsoon during the last Glacial. Science 335:570–573

    CAS  PubMed  Google Scholar 

  • Kay KM, Reeves PA, Olmstead RG, Schemske DW (2005) Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA its and ETS sequences. Am J Bot 92:1899–1910. https://doi.org/10.3732/ajb.92.11.1899

    Article  CAS  PubMed  Google Scholar 

  • Koenen EJM, Clarkson JJ, Pennington TD, Chatrou LW (2015) Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytol 207:327–339. https://doi.org/10.1111/nph.13490

    Article  PubMed  Google Scholar 

  • Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC (2016) The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol 210:1430–1442. https://doi.org/10.1111/nph.13920

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavin M (2006) Floristic and geographical stability of discontinuous seasonally dry tropical forests explains patterns of plant phylogeny and endemism. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. CRC Press, Boca Raton, FL, pp 433–448

    Google Scholar 

  • Ledru MP, Ceccantini G, Gouveia S, Lopez-Saez JA, Pessenda L, Ribero AS (2006) Millennial-scale climatic and vegetation changes in a northern Cerrado (northeast Brazil) since the Last Glacial Maximum. Quat Sci Rev 25:1110–1126

    Google Scholar 

  • Leite YLR, Costa LP, Loss AC, Rocha RG, Batalha-Filho H, Bastos AC, Quaresma VS, Fagundes V, Paresque R, Passamani M, Pardini R (2016) Neotropical forest expansion during last glacial period challenges refuge hypothesis. Proc Natl Acad Sci U S A 113:1008–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liebsch D, Marques MC, Goldenberg R (2008) How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol Conserv 141:1717–1725

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Palaeoceanography 20:PA1003

    Google Scholar 

  • Liu X, Battisti DS (2015) The influence of orbital forcing of tropical insolation on the climate and isotopic composition of precipitation in South America. J Clim 28:4841–4862

    Google Scholar 

  • Luebert F, Wiegend W (2014) Phylogenetic insights into Andean plant diversification. Front Ecol Evol 2:article 27. https://doi.org/10.3389/fevo.2014.00027

    Article  Google Scholar 

  • Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:192

    PubMed  PubMed Central  Google Scholar 

  • McGee D, Moreno-Chamarro E, Green B, Marshall J, Galbraith E, Bradtmiller L (2018) Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts. Quat Sci Rev 180:214–228

    Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563

    Google Scholar 

  • Mosblech NAS, Bush MB, Gosling WD, Hodell DA, Thomas L, van Calsteren P, Correa-Metrio A, Valencia BG, Curtis J, van Woesik R (2012) North Atlantic forcing of Amazonian precipitation during the last ice age. Nat Geosci 5:817–820

    CAS  Google Scholar 

  • Nace TE, Baker PA, Dwyer GS, Silva CG, Rigsby CA, Burns SJ, Giosan L, Ott-Bliesner B, Liu Z, Zhu J (2014) The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary. Palaeogeogr Palaeoclimatol Palaeoecol 415:3–13

    Google Scholar 

  • Pedro JB, Jochum M, Buizert C, He F, Barker S, Rasmussen SO (2018) Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat Sci Rev 192:27–46

    Google Scholar 

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273

    Google Scholar 

  • Peterson LC, Haug GH, Hughen KA, Rohl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the Last Glacial. Science 290:1947–1951

    CAS  PubMed  Google Scholar 

  • Phillips BL, Brown GP, Greenlees M, Webb JK, Shine R (2007) Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia. Austral Ecol 32:169–176

    Google Scholar 

  • Pouchon C, Fernández A, Nassar JM, Boyer F, Aubert S, Lavergne S, Mavárez J (2018) Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the Tropical Andes. Syst Biol 67:1041–1060

    CAS  PubMed  Google Scholar 

  • Prado LF, Wainer I, Chiessi CM (2013) Mid-Holocene PMIP3/CMIP5 model results: intercomparison for the South American monsoon system. The Holocene 23:1915–1920

    Google Scholar 

  • Prates I, Rodrigues MT, Melo-Sampaio PR, Carnaval AC (2015) Phylogenetic relationships of Amazonian anole lizards (Dactyloa): taxonomic implications, new insights about phenotypic evolution and the timing of diversification. Mol Phylogenet Evol 82:258–268

    PubMed  Google Scholar 

  • Prates I, Xue AT, Brown JL, Alvarado-Serrano DF, Rodrigues MT, Hickerson MJ, Carnaval AC (2016a) Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proc Natl Acad Sci 113:7978–7985

    CAS  PubMed  Google Scholar 

  • Prates I, Rivera D, Rodrigues MT, Carnaval AC (2016b) A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards. Mol Ecol 25:5174–5186

    PubMed  Google Scholar 

  • Prates I, Penna A, Rodrigues MT, Carnaval AC (2018) Local adaptation in mainland anole lizards: integrating population history and genome-environment associations. Ecol Evol 8:11932–11944

    PubMed  PubMed Central  Google Scholar 

  • Punyasena SW, Mayle FE, McElwain JC (2008) Quantitative estimates of glacial and Holocene temperature and precipitation change in lowland Amazonian Bolivia. Geology 36:667–670

    CAS  Google Scholar 

  • Quijada-Mascareñas A, Ferguson JE, Pook CE, Wuster W (2007) Phylogeographic patterns of Trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. J Biogeogr 34:1296–1312

    Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207

    CAS  PubMed  Google Scholar 

  • Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: biogeographic cradles, museums, and graves. Science 361:244

    CAS  Google Scholar 

  • Reis LS, Guimaraes J, Souza-Filho P, Sahoo PK, Figueiredo M, Giannini T (2017) Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quat Int 449:83–105

    Google Scholar 

  • Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM (2001) Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293:2242–2245

    CAS  PubMed  Google Scholar 

  • Rull V, Carnaval AC (2019) Introduction. In: Rull V, Carnaval A (eds) Neotropical diversification. Springer, Heidelberg

    Google Scholar 

  • Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC (2009) Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol 7(3):e1000056

    PubMed Central  Google Scholar 

  • Schrag DP, Adkins JF, McIntyre K, Alexander JL, Hodell DA, Charles CD, McManus JF (2002) The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat Sci Rev 21:331–342

    Google Scholar 

  • Steig E, Alley R (2002) Phase relationships between Antarctic and Greenland climate records. Ann Glaciol 35:451–456

    Google Scholar 

  • Stodart E, Parer I (1988) Colonisation of Australia by the rabbit Oryctolagus cuniculus (L.). CSIRO, Canberra

    Google Scholar 

  • Stute M, Forster M, Frischkorn H, Serejo CP, Broecker WS (1995) Cooling of tropical Brazil during the last glacial maximum. Science 269:379–383

    CAS  PubMed  Google Scholar 

  • Sylvestre F, Servant M, Servant-Vildary S, Causse C, Fournier M, Ybert JP (1999) Lake-level chronology on the southern Bolivian Altiplano (18–23°S) during late-Glacial time and the early Holocene. Quat Res 51:54–66

    Google Scholar 

  • van der Hammen T, Cleef AM (1986) Development of the high Andean páramo flora and vegetation. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 153–201

    Google Scholar 

  • Vanzolini P, Williams E (1970) South American anoles: the geographic differentiation and evolution of the anolis Chrysolepis species group (Sauria, Iguanidae). Arquivos de Zoologia 19:125–298

    Google Scholar 

  • Vargas OM, Dick CW (2019) Diversification history of Neotropical Lecythidaceae, an ecologically dominant tree family of Amazon rain forest. In: Rull V, Carnaval A (eds) Neotropical diversification. Springer, Heidelberg

    Google Scholar 

  • Vargas OM, Simpson BB (2019) Allopatric speciation versus parapatric ecological divergence in high Andean plants (Asteraceae: Piofontia). bioRxiv:868216. https://doi.org/10.1101/868216

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Chang 54:251–267

    Google Scholar 

  • Voelker AH (2002) Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat Sci Rev 21:1185–1212

    Google Scholar 

  • Wang X, Edwards RL, Auler AS, Cheng H, Kong X, Wang Y, Cruz FW, Dorale JA, Chiang H-W (2017) Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541:204–207

    CAS  PubMed  Google Scholar 

  • Wehtje W (2003) The range expansion of the great-tailed grackle (Quiscalus mexicanus Gmelin) in North America since 1880. J Biogeogr 30:1593–1607

    Google Scholar 

  • Wheatley A et al (2019) Modeling the origins of biodiversity in the tropical Andes (manuscript in preparation)

    Google Scholar 

  • Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197

    PubMed  Google Scholar 

  • Zhang Y, Chiessi CM, Mulitza S, Sawakuchi AO, Haggi C, Zabel M, Portioho-Ramos C, Schefuß E, Crivellari S, Wefer G (2017) Different precipitation patterns across tropical South America during Heinrich and Dansgaard-Oeschger stadials. Quat Sci Rev 177:1–9

    Google Scholar 

Download references

Acknowledgements

Writing of the manuscript was supported by a NASA workshop grant (NASA 15-BIODIV15-0013) to SF, as well as by NSF EAR-1338694 to PB, SF, DB, and CD. We are grateful to the Charles Darwin Foundation, Galapagos for their support during the writing of an initial version of this manuscript. John Megahan, University of Michigan, assisted with graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baker, P.A. et al. (2020). Beyond Refugia: New Insights on Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South America. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_3

Download citation

Publish with us

Policies and ethics