Skip to main content

Disparate Patterns of Diversification Within Liolaemini Lizards

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Abstract

Lizards are a major component of temperate-to-tropical terrestrial vertebrate biotas, and have played a central role as model systems for evolutionary and ecological research. The most diverse lizard group of the southern half of South America is the clade Liolaemini (=family Liolaemidae), which includes three genera characterized by large differences in species richness, as well as many other aspects of their biology. At one extreme is the monotypic genus Ctenoblepharys, restricted to sandy beaches and dunes in the coastal desert of Peru, oviparous and insectivorous. At the other extreme, Liolaemus is the world’s richest temperate zone amniote genus of the temperate zone, with 262 described species. Liolaemus is widely distributed across southern South America, from north-central Peru to Tierra del Fuego, inhabiting climatic regimes extending from sea level to 5176 m in Bolivia, and exhibiting great diversity in biological features such as body size, color pattern, diet, reproductive mode (viviparous, oviparous, and one parthenogenetic species) and karyotype. The third clade is the genus Phymaturus, which includes 44 described species distributed along the eastern and western Andean slopes in Argentina and Chile and through Patagonia. All Phymaturus species are viviparous, primarily herbivorous, strictly saxicolous and restricted to volcanic plateaus and peaks. Here, we contrast diversification patterns between the more specialized Phymaturus and Ctenoblepharys, with the more generalist Liolaemus. We found disparate patterns of diversification among the three genera, with Liolaemus showing the highest net diversification rate and, surprisingly, Phymaturus showing the highest speciation rates. The lower species diversity in Phymaturus, however, appears to be due to a high extinction rate, while the extraordinary species richness in Liolaemus is likely due to a lower extinction rate. The monotypic Ctenoblepharys is characterized by a negative net diversification rate, highlighting its vulnerability. We also found evidence of selection acting on the body sizes of Liolaemini species, in the form of a positive correlation between body size evolution and net diversification, speciation and extinction rates in Phymaturus, and a clear slowdown of morphological evolution in the Phymaturus patagonicus clade. We discuss the advantages and disadvantages of generalist vs. specialist life histories in Liolaemini, and provide recommendations for their conservation based on our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdala CS, Quinteros AS (2014) Los últimos 30 años de estudios de la familia de lagartijas más diversa de Argentina: Actualización taxonómica y sistemática de Liolaemidae. Cuad Herpetol 28(2):55–82

    Google Scholar 

  • Abdala CS, Baldo D, Juárez RA et al (2016) The first parthenogenetic Pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104(2):487–497

    Article  Google Scholar 

  • Abdala CS, Semhan RV, Laspiur A et al (2017) Rediscovery of Liolaemus rabinoi (Iguania: Liolaemidae) after 35 years: redescription, biological and phylogenetic information, and conservation challenges. Salamandra 53(1):14–125

    Google Scholar 

  • Agnarsson I, Avilés L, Coddington JA et al (2006) Sociality in theridiid spiders: repeated origins of an evolutionary dead end. Evolution 60(11):2342–2351

    Article  PubMed  Google Scholar 

  • Aiassa D, Gorla N, Martori R (2005) Citogenética de los lagartos del género Liolaemus (Iguania: Liolaemidae) de América del Sur. Cuad Herpetol 18:23–36

    Google Scholar 

  • Albino AM (2008) Iguanian lizards from the Colhuehuapian (early Miocene) of Gaiman, (Chubut province, Argentina). Ameghiniana 45(4):775–782

    Google Scholar 

  • Alfaro ME, Santini F, Brock C et al (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A 106:13410–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaro ME, Faircloth BC, Harrington RC et al (2018) Explosive diversification of marine fishes at the cretaceous–Palaeogene boundary. Nat Ecol Evol 2:688–696

    Article  PubMed  Google Scholar 

  • Anacker BL, Whittall JB, Goldberg EE et al (2011) Origins and consequences of serpentine endemism in the California flora. Evolution 65(2):365–376

    Article  PubMed  Google Scholar 

  • Aparicio J, Ocampo M (2010) Liolaemus grupo montanus Etheridge 1995 (Iguania: Liolaemidae). Cuad Herpetol 24:133–135

    Google Scholar 

  • Armbruster WS (2014) Floral specialization and angiosperm diversity: phenotypic divergence, fitness trade-offs and realized pollination accuracy. AoB Plants 6. https://doi.org/10.1093/aobpla/plu003

  • Arnold EN (1998) Structural niche, limb morphology and locomotion in lacertid lizards (Squamata, Lacertidae); a preliminary survey. Bull Br Mus Nat Hist (Zool) 64:63–89

    Google Scholar 

  • Bachman S, Moat J, Hill AW et al (2011) Supporting red list threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys 150:117–126

    Article  Google Scholar 

  • Barker FK, Burns KJ, Klicka J et al (2013) Going to extremes: contrasting rates of diversification in a recent radiation of new world passerine birds. Syst Biol 62:298–320

    Article  PubMed  Google Scholar 

  • Beaulieu JM, O’meara BC (2016) Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst Biol 65(4):583–601

    Article  PubMed  Google Scholar 

  • Berner D, Salzburger W (2015) The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet 31(9):491–499

    Article  CAS  PubMed  Google Scholar 

  • Breitman MF, Avila LJ, Sites JW Jr et al (2011) Lizards from the end of the world: phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini). Mol Phylogenet Evol 59(2):364–376

    Article  PubMed  Google Scholar 

  • Breitman MF, Morando M, Avila LJ (2013) Past and present taxonomy of the Liolaemus lineomaculatus section (Liolaemidae): is the morphological arrangement hypothesis valid? Zool J Linnean Soc 168(3):612–668

    Article  Google Scholar 

  • Brodersen J, Post DM, Seehausen O (2018) Upward adaptive radiation cascades: predator diversification induced by prey diversification. Trends Ecol Evol 33(1):59–70

    Article  PubMed  Google Scholar 

  • Camargo A, Sinervo B, Sites JW Jr (2010) Lizards as model organisms for linking phylogeographic and speciation studies. Mol Ecol 19(16):3250–3270

    Article  PubMed  Google Scholar 

  • Cei JM (1986) Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas. Museo Regionale di Scienze Naturali, Torino, p 527

    Google Scholar 

  • Cei JM, Videla F, Vicente L (2003) From oviparity to viviparity: a preliminary note on the morphometric differentiation between oviparous and viviparous species assigned to the genus Liolaemus (Reptilia, Squamata, Liolaemidae). J Zool Syst Evol Res 41(3):152–156

    Article  Google Scholar 

  • Cope ED (1896) The primary factors of organic evolution. The Open Court Publishing Company, Chicago, IL

    Book  Google Scholar 

  • Corbalán V, Debandi G (2013) Basking behaviour in two sympatric herbivorous lizards (Liolaemidae: Phymaturus) from the Payunia volcanic region of Argentina. J Nat Hist 47(19–20):1365–1378

    Article  Google Scholar 

  • Corbalán V, Debandi G (2014) Resource segregation in two herbivorous species of mountain lizards from Argentina. Herpetol J 24(4):201–208

    Google Scholar 

  • Corbalán V, Tognelli MF, Scolaro JA et al (2011) Lizards as conservation targets in Argentinean Patagonia. J Nat Conserv 19(1):60–67

    Article  Google Scholar 

  • Corbalán V, Debandi G, Kubisch E (2013) Thermal ecology of two sympatric saxicolous lizards of the genus Phymaturus from the Payunia region (Argentina). J Therm Biol 38(7):384–389

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Day EH, Hua X, Bromham L (2016) Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists. J Evol Biol 29(6):1257–1267

    Article  CAS  PubMed  Google Scholar 

  • Debandi G, Corbalan V, Scolaro JA et al (2012) Predicting the environmental niche of the genus Phymaturus: are palluma and patagonicus groups ecologically differentiated? Austral Ecol 37(3):392–400

    Article  Google Scholar 

  • Díaz Gómez JM (2011) Estimating ancestral ranges: testing methods with a clade of Neotropical lizards (Iguania: Liolaemidae). PLoS One 6(10):e26412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diniz JAF (2004) Phylogenetic diversity and conservation priorities under distinct models of phenotypic evolution. Conserv Biol 18:698–704

    Article  Google Scholar 

  • Ebel ER, DaCosta JM, Sorenson MD et al (2015) Rapid diversification associated with ecological specialization in Neotropical Adelpha butterflies. Mol Ecol 24(10):2392–2405

    Article  CAS  PubMed  Google Scholar 

  • Espinoza RE, Wiens JJ, Tracy CR (2004) Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc Natl Acad Sci U S A 101(48):16819–16824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquerré D, Brennan IG, Catullo RA et al (2019) How mountains shape biodiversity: the role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution 73(2):214–230

    Article  PubMed  Google Scholar 

  • Etheridge RE (1995) Redescription of Ctenoblepharys adspersa Tschudi, 1845, and the taxonomy of Liolaeminae (Reptilia: Squamata: Tropiduridae). Am Mus Novit 3142:1–34

    Google Scholar 

  • Etheridge R, Espinoza RE (2000) Taxonomy of the Liolaeminae (Squamata: Iguania: Tropiduridae) and a semi-annotated bibliography. Smithson Herpetol Inf Serv 126(1):64

    Google Scholar 

  • Etienne RS, Haegeman B (2012) A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. Am Nat 180:E75–E89

    Article  PubMed  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Faith DP (2018) Phylogenetic diversity and conservation evaluation: perspectives on multiple values, indices, and scales of application. In: Scherson R, Faith DP (eds) Phylogenetic diversity: applications and challenges in biodiversity science. Springer, Cham, pp 1–26

    Google Scholar 

  • Fontanella FM, Olave M, Avila LJ et al (2012) Molecular dating and diversification of the South American lizard genus Liolaemus (subgenus Eulaemus) based on nuclear and mitochondrial DNA sequences. Zool J Linnean Soc 164(4):825–835

    Article  Google Scholar 

  • Forister ML, Dyer LA, Singer MS et al (2012) Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93(5):981–991

    Article  CAS  PubMed  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19(1):207–233

    Article  Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC et al (2008) Rise of the Andes. Science 320(5881):1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Giambiagi L, Mescua J, Bechis F et al (2016) Cenozoic Orogenic evolution of the southern Central Andes (32–36°S). In: Folguera A (ed) Growth of the southern Andes. Springer, Cham, pp 63–98

    Chapter  Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the central and northern Andes: a review. Geol Soc Am Bull 112(7):1091–1105

    Article  Google Scholar 

  • Haldane JBS (1951) Everything has a history. Allen & Unwin, London

    Google Scholar 

  • Harmon LJ, Schulte JA, Larson A et al (2003) Tempo and mode of evolutionary radiation in Iguanian lizards. Science 301(5635):961–964

    Article  CAS  PubMed  Google Scholar 

  • Harmon LJ, Weir JT, Brock CD et al (2007) GEIGER: investigating evolutionary radiations. Bioinformatics 24(1):129–131

    Article  PubMed  CAS  Google Scholar 

  • Hazzi NA, Moreno JS, Ortiz-Movliav C et al (2018) Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc Natl Acad Sci U S A 115(31):7985–7990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmich WC (1951) On ecotypic and autotypic characters, a contribution to the knowledge of the evolution of the genus Liolaemus (Iguanidae). Evolution 5(4):359–369

    Article  Google Scholar 

  • Hone DW, Benton MJ (2005) The evolution of large size: how does Cope’s rule work? Trends Ecol Evol 20(1):4–6

    Article  PubMed  Google Scholar 

  • Ibargüengoytía NR, Acosta JC, Boretto JM, Villavicencio HJ, Marinero JA, Krenz JD (2008) Field thermal biology in Phymaturus lizards: comparisons from the Andes to the Patagonian steppe in Argentina. J Arid Environ 72(9):1620–1630

    Article  Google Scholar 

  • Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst 33(1):741–777

    Article  Google Scholar 

  • Janz N, Nylin S (2008) The oscillation hypothesis of host-plant range and speciation. In: Tilmon KJ (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Los Angeles, CA, pp 203–215

    Google Scholar 

  • Jetz W, Thomas GH, Joy JB et al (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  CAS  PubMed  Google Scholar 

  • Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15(2):173–190

    Article  Google Scholar 

  • Kelley ST, Farrell BD (1998) Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution 52(6):1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Kling MM, Mishler BD, Thornhill AH et al (2018) Facets of phylodiversity: evolutionary diversification, divergence and survival as conservation targets. Philos Trans R Soc B 374(1763):20170397

    Article  Google Scholar 

  • LaBarbera M (1989) Analyzing body size as a factor in ecology and evolution. Annu Rev Ecol Syst 20(1):97–117

    Article  Google Scholar 

  • Labra A, Pienaar J, Hansen TF (2009) Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am Nat 174(2):204–220

    Article  PubMed  Google Scholar 

  • Lanchier N, Neuhauser C (2006) A spatially explicit model for competition among specialists and generalists in a heterogeneous environment. Ann Appl Probab 16(3):1385–1410

    Article  Google Scholar 

  • Li H, Wiens JJ (2019) Time explains regional richness patterns within clades more often than diversification rates or area. Am Nat 193(4):514–529

    Article  PubMed  Google Scholar 

  • Lobo F, Slodki D, Valdecantos S (2010) Two new species of lizards of the Liolaemus montanus group (Iguania: Liolaemidae) from the northwestern uplands of Argentina. J Herpetol 44:279–293

    Article  Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ et al (2010) Biogeography. Sinauer, Sunderland, MA

    Google Scholar 

  • Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457(7231):830–836

    Article  CAS  PubMed  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Marín AG, Olave M, Avila LJ et al (2018) Evidence of body size and shape stasis driven by selection in Patagonian lizards of the Phymaturus patagonicus clade (Squamata: Liolaemini). Mol Phylogenet Evol 129:226–241

    Article  Google Scholar 

  • Mayr E (2001) What evolution is. Science Masters Series. Basic Books, London

    Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  PubMed  Google Scholar 

  • Moen D, Morlon H (2014) Why does diversification slow down? Trends Ecol Evol 29:190–197

    Article  PubMed  Google Scholar 

  • Morando M (2004) Sistemática y filogenia de grupos de especies de los géneros Phymaturus y Liolaemus (Squamata: Tropiduridae: Liolaeminae) del oeste y sur de Argentina. Unpublished D. Phil. Thesis, Universidad Nacional de Tucumán, Argentina

    Google Scholar 

  • Moreno Azócar DL, Bonino MF, Perotti MG et al (2016) Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade. J Exp Biol 219:1162–1171

    PubMed  Google Scholar 

  • Morlon H, Potts MD, Plotkin JB (2010) Inferring the dynamics of diversification: a coalescent approach. PLoS Biol 8(9):e1000493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Near TJ, Dornburg A, Kuhn KL et al (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci U S A 109:3434–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nee S (2001) Inferring speciation rates from phylogenies. Evolution 55(4):661–668

    Article  CAS  PubMed  Google Scholar 

  • Nosil P, Mooers AØ (2005) Testing hypotheses about ecological specialization using phylogenetic trees. Evolution 59(10):2256–2263

    Article  CAS  PubMed  Google Scholar 

  • Olave M, Avila LJ, Sites JW Jr et al (2015) Model-based approach to test hard polytomies in the Eulaemus clade of the most diverse south American lizard genus Liolaemus (Liolaemini, Squamata). Zool J Linnean Soc 174(1):169–184

    Article  Google Scholar 

  • Olave M, Avila LJ, Sites JW Jr et al (2017) Hidden diversity within the lizard genus Liolaemus: genetic vs morphological divergence in the L. rothi complex (Squamata: Liolaeminae). Mol Phylogenet Evol 107:56–63

    Article  PubMed  Google Scholar 

  • Olave M, Avila LJ, Sites JW Jr et al (2018) Hybridization could be a common phenomenon within the highly diverse lizard genus Liolaemus. J Evol Biol 31(6):893–903

    Article  PubMed  Google Scholar 

  • Olave M, Avila LJ, Sites JW Jr et al (2019) How important is it to consider lineage diversification heterogeneity in macroevolutionary studies: lessons from the lizard family Liolaemidae. bioRxiv. https://doi.org/10.1101/563635

  • Paradis E, Schliep K (2018) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35(3):526–528

    Article  CAS  Google Scholar 

  • Pelegrin N, Bucher EH (2012) Effects of habitat degradation on the lizard assemblage in the arid Chaco, Central Argentina. J Arid Environ 79:13–19

    Article  Google Scholar 

  • Piantoni C, Ibargüengoytía NR, Cussac VE (2006) Age and growth of the Patagonian lizard Phymaturus patagonicus. Amphibia-Reptilia 27(3):385–392

    Article  Google Scholar 

  • Pietrek AG, Walker RS, Novaro AJ (2009) Susceptibility of lizards to predation under two levels of vegetative cover. J Arid Environ 73(4–5):574–577

    Article  Google Scholar 

  • Pincheira-Donoso D (2012) Intraspecific predation in the Liolaemus lizard radiation: a primer. Anim Biol 62:277–287

    Article  Google Scholar 

  • Pincheira-Donoso D, Tregenza T, Witt MJ et al (2013) The evolution of viviparity opens opportunities for lizard radiation but drives it into a climatic cul-de-sac. Glob Ecol Biogeogr 22(7):857–867

    Article  Google Scholar 

  • Pincheira-Donoso D, Harvey LP, Ruta M (2015) What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation. BMC Evol Biol 15(1):153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S et al (2012) Nlme: linear and nonlinear mixed effects models. R Package Version 3:1–117

    Google Scholar 

  • Ponce JF, Rabassa J, Coronato A et al (2011) Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the middle Holocene. Biol J Linn Soc 103(2):363–379

    Article  Google Scholar 

  • Price SA, Hopkins SS, Smith KK et al (2012) Tempo of trophic evolution and its impact on mammalian diversification. Proc Natl Acad Sci U S A 109(18):7008–7012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyron RA (2014) Temperate extinction in squamate reptiles and the roots of latitudinal diversity gradients. Glob Ecol Biogeogr 23(10):1126–1134

    Article  Google Scholar 

  • Rabassa J (2008) The late Cenozoic of Patagonia and Tierra del Fuego. In: van der Meer JJM (ed) Developments in quaternary sciences, vol 11. Elsevier, Amsterdam

    Google Scholar 

  • Rabassa J, Coronato AM, Salemme M (2005) Chronology of the late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). J S Am Earth Sci 20(1–2):81–103

    Article  Google Scholar 

  • Rabosky DL (2014) Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 9(2):e89543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabosky DL, Glor RE (2010) Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proc Natl Acad Sci U S A 107:22178–22183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabosky DL, Lovette IJ (2008) Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62(8):1866–1875

    Article  PubMed  Google Scholar 

  • Rabosky DL, Grundler M, Anderson C et al (2014) BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol 5(7):701–707

    Article  Google Scholar 

  • Rabosky DL, Title PO, Huang H (2015) Minimal effects of latitude on present-day speciation rates in New World birds. Proc R Soc Lond Ser B Biol Sci 282:20142889

    Google Scholar 

  • Rabosky DL, Chang J, Title PO et al (2018) An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559(7714):392–395

    Article  CAS  PubMed  Google Scholar 

  • Reaney AM, Saldarriaga-Córdoba M, Pincheira-Donoso D (2018) Macroevolutionary diversification with limited niche disparity in a species-rich lineage of cold-climate lizards. BMC Evol Biol 18(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricklefs RE (2007) Estimating diversification rates from phylogenetic information. Trends Ecol Evol 22(11):601–610

    Article  PubMed  Google Scholar 

  • Rull V (2018) Neotrophical diversification: historical overview and conceptual insights. PeerJ Preprints e27294v1

    Google Scholar 

  • Salisbury CL, Seddon N, Cooney CR et al (2012) The latitudinal gradient in dispersal constraints: ecological specialisation drives diversification in tropical birds. Ecol Lett 15(8):847–855

    Article  PubMed  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. OUP, Oxford, p 296

    Google Scholar 

  • Schulte JA, Macey JR, Espinoza RE et al (2000) Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biol J Linn Soc 69(1):75–102

    Article  Google Scholar 

  • Silvestro D, Schnitzler J, Zizka G (2011) A Bayesian framework to estimate diversification rates and their variation through time and space. BMC Evol Biol 11:311

    Article  PubMed  PubMed Central  Google Scholar 

  • Simões M, Breitkreuz L, Alvarado M et al (2016) The evolving theory of evolutionary radiations. Trends Ecol Evol 31(1):27–34

    Article  PubMed  Google Scholar 

  • Simpson GG (1953) The Baldwin effect. Evolution 7(2):110–117

    Article  Google Scholar 

  • Sinervo B, Mendez de la Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328(5980):894–899

    Article  CAS  PubMed  Google Scholar 

  • Slavenko A, Feldman A, Allison A et al (2019) Global patterns of body size evolution in Squamate reptiles are not driven by climate. Glob Ecol Biogeogr 28(4):471–483

    Article  Google Scholar 

  • Sookias RB, Butler RJ, Benson RB (2012) Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution. Proc R Soc Lond B Biol Sci 279(1736):2180–2187

    Google Scholar 

  • Soulebeau A, Aubriot X, Gaudeul M et al (2015) The hypothesis of adaptive radiation in evolutionary biology: hard facts about a hazy concept. Org Divers Evol 15(4):747–761

    Article  Google Scholar 

  • Stellatelli OA, Block C, Vega LE et al (2015) Responses of two sympatric sand lizards to exotic forestations in the coastal dunes of Argentina: some implications for conservation. Wildl Res 41(6):480–489

    Google Scholar 

  • Stroud JT, Losos JB (2016) Ecological opportunity and adaptive radiation. Annu Rev Ecol Evol Syst 47:507–532

    Article  Google Scholar 

  • Suchard MA, Lemey P, Baele G, et al (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 Virus Evolution 4, vey016

    Google Scholar 

  • Templeton AR, Robertson RJ, Brisson J et al (2001) Disrupting evolutionary processes: the effect of habitat fragmentation on collared lizards in the Missouri Ozarks. Proc Natl Acad Sci U S A 98(10):5426–5432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson KA, Rieseberg LH, Schulter D (2018) Speciation and the city. Trends Ecol Evol 33:815–826

    Article  PubMed  Google Scholar 

  • Tulli MJ, Abdala V, Cruz FB (2012) Effects of different substrates on the sprint performance of lizards. J Exp Biol 215(5):774–784

    Article  PubMed  Google Scholar 

  • Tulli MJ, Cruz FB, Kohlsdorf T et al (2016) When a general morphology allows many habitat uses. Integr Zool 11(6):483–499

    Article  PubMed  Google Scholar 

  • Vamosi JC, Armbruster WS, Renner SS (2014) Evolutionary ecology of specialization: insights from phylogenetic analysis. Proc R Soc B 281:20142004

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega LE, Bellagamba PJ, Fitzgerald LA (2000) Long-term effects of anthropogenic habitat disturbance on a lizard assemblage inhabiting coastal dunes in Argentina. Can J Zool 78(9):1653–1660

    Article  Google Scholar 

  • Vicenzi N, Corbalán V, Miles D et al (2017) Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biol Conserv 206:151–160

    Article  Google Scholar 

  • Vidal M, Habit E, González-Gajardo A et al (2010) Thermoregulation and activity pattern of the high-mountain lizard Phymaturus palluma (Tropiduridae) in Chile. Fortschr Zool 27(1). https://doi.org/10.1590/S1984-46702010000100003

  • Vitt LJ, Pianka ER (2014) Lizard ecology: historical and experimental perspectives. Princeton University Press, Princeton, NJ, 403pp

    Google Scholar 

Download references

Acknowledgments

We thank Guarino R. Colli for useful comments and suggestions made on the first version of this chapter. We thank all members of the Grupo de Herpetología Patagónica (IPEEC-CONICET) for continuing support. Financial support was provided by ANPCYT-FONCYT 1252/2015 (MM), and a postdoctoral fellowship (AGM) from CONICET, Argentina and a postdoctoral fellowship (MO) from the Alexander von Humboldt Foundation at Meyer Lab, Konstanz, Germany.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Fig. S1

General overview of the time-calibrated phylogenetic tree in png format (PNG 205 kb)

Fig. S2

Complete time-calibrated phylogenetic tree in png format (PNG 2177 kb)

Fig. S3

Speciation rate projected in a color gradient on the phylogenetic tree (PDF 21 kb)

Fig. S4

Extinction rate projected in a color gradient on the phylogenetic tree (PDF 21 kb)

Fig. S5

Density plots for the net diversification, speciation, extinction and morphological evolution rates obtained for clades within Liolaemus genus. The density plots are constructed considering the mean obtained from each of the last 500 trees of BEAST analysis. The p-value corresponds to an ANOVA test comparing distributions (PNG 305 kb)

Fig. S6

Mean (dots) and 95% credibility intervals (lines) for the net diversification, speciation, extinction and morphological evolution rates obtained for the case of clades within Liolaemus genus. The plots were constructed considering the mean obtained from each of the last 500 trees of BEAST analysis. The p-value corresponds to an ANOVA test comparing distribution (PNG 115 kb)

Fig. S7

Non-linear (net diversification and speciation rates) and linear (extinction rate) regressions as a function of the morphological evolution rate in Phymaturus clades. Each point is the rate obtained per species (PNG 159 kb)

Fig. S8

Phylogenetically uncontrolled and controlled non-linear (net diversification and speciation rates) and linear (extinction rate) regressions as a function of the body size evolution rate in Phymaturus patagonicus. Each point is the rate obtained per species (PNG 172 kb)

Table S1

GenBank accession numbers corresponding to all 25 genes considered for the phylogenetic tree reconstruction. Finally, analyses were performed based on a selection of 13 loci (XLSX 48 kb)

Table S2

Summary statistics for the mutation rate estimations (mutation per million year) from BEAST analysis per locus, sorted by gene nature (mitochondrial gene [mt], anonymous nuclear loci [ANL] and nuclear protein coding loci [NPCL]) (XLSX 40 kb)

Table S3

Means of SVL data collected from the literature for morphological evolution analysis with BAMM (TXT 4 kb)

Table S4

Mean and standard deviation of rates obtained for the different target clades (DOCX 104 kb)

Table S5

Mean and standard deviation of rates obtained for each species (XLSX 28 kb)

Table S6

Linear model, non-linear model for phylogenetically controlled and uncontrolled model results for regression between diversification rates and body size evolution rate (presented in Figs. 28.528.6 and S7S8) (XLSX 32 kb)

Table S7

Detailed ANOVA results implemented to compare the three genera, as well as Liolaemus subgenus amd Phymaturus main clades rates (presented in Figs. 28.328.4 and S5S6) (XLSX 36 kb)

File S1

Complete DNA alignments in nexus format used for the phylogenetic reconstruction (NEXUS 1821 kb)

File S2

Full time-calibrated phylogenetic tree in nexus format (BEAST output) (NEXUS 1379 kb)

File S3

Last 500 phylogenetic trees inferred during the MCMC of BEAST and used for rate estimations with BAMM (NEXUS 123522 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olave, M., Marín, A.G., Avila, L.J., Sites, J.W., Morando, M. (2020). Disparate Patterns of Diversification Within Liolaemini Lizards. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_28

Download citation

Publish with us

Policies and ethics