Skip to main content

Curcumin and Its Nanoformulations as Therapeutic for Alzheimer’s Disease

  • Chapter
  • First Online:
Nanobiotechnology in Neurodegenerative Diseases

Abstract

Since decades curcumin has been known for its pleiotropic nature and for its biological effects which broadly include its antioxidant, anti-inflammatory, and anticancer potential. Plethora of published articles are a proof of pluripotent effect of curcumin against various neurodegenerative disorders including Alzheimer’s disease. Mechanistically, naive curcumin inhibits the formation of amyloid-β plaques, attenuates the hyperphosphorylation of tau and enhances its clearance, binds copper, lowers the cholesterol level, modifies microglial activity, inhibits acetyl cholinesterase, mediates the insulin signaling pathway, and is reported to be a very effective antioxidant. However, its usefulness as a therapeutic agent is hindered by its compromised bioavailability due to low aqueous solubility (11 ng/mL) and low permeability (log 3.28). Nano-delivery systems like liposomes, polymeric nanoparticles, micelles, conjugates, peptide carriers, cyclodextrins, solid dispersions, lipidic nanoparticles, and emulsions have been extensively explored for enhancing the overall bioavailability of curcumin. This book chapter has been written to describe scope of using curcumin and its nanoformulation(s) as therapeutics for Alzheimer’s disease. Ongoing clinical trials on curcumin are also covered. Various curcumin-based products currently available in the market or those in the pipeline are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnese G, Placido B, Emanuela M (2017) Role of vitamin E in the treatment of Alzheimer’s disease: evidence from animal models. Int J Mol Sci 18(12):2504

    Article  CAS  Google Scholar 

  • Alain D, Juan F, Rafael B, Peter P (2017) Cerebrospinal fluid biomarkers for Alzheimer’s disease in Down syndrome. Alzheimers Dement 8:1–10

    Google Scholar 

  • Alva G, Cummings J (2008) Relative tolerability of Alzheimer’s disease treatments. Psychiatry (Edgmont) 5:27–36

    Google Scholar 

  • Alzheimer’s Association (2019) Alzheimer’s disease facts and figures. Alzheimers Dement 15:321–387

    Article  Google Scholar 

  • Amalraj A, Pius A, Gopi S, Gopi S (2017) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—a review. J Tradit Complement Med 7(2):205–233

    Article  PubMed  Google Scholar 

  • Anand P, Kunnumakkara A, Newman R, Aggarwal B (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Thomas S, Kunnumakkara A, Thomas S, Kunnumakkara A, Sundaram C, Harikumar K, Sung B, Tharakan S, Misra K, Priyadarsini I, Rajasekharan K, Aggarwal B (2018) Antioxidant, anti-inflammatory anticancer, anticarcinogenic, antidiabetic and neuroprotective effects of curcumin analogues (congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  Google Scholar 

  • Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, Vandelli A, Tosi G, Grabrucker A (2017) Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526:413–424

    Article  CAS  PubMed  Google Scholar 

  • Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6(4):367–377

    Article  CAS  PubMed  Google Scholar 

  • Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow S, Ho C, Ip P, Ho S, Yu W, Lai Y, Chan H, Szeto S, Chan H, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113

    Article  PubMed  Google Scholar 

  • Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In Natural polymer drug delivery systems. Springer, Cham, pp 33–93

    Chapter  Google Scholar 

  • Brasure M, Desai P, Davila H, Nelson VA, Calvert C, Jutkowitz E, Butler M, Fink A (2018) Physical activity interventions in preventing cognitive decline and Alzheimer-type dementia: a systematic review. Ann Intern Med 168(1):30–38

    Article  PubMed  Google Scholar 

  • Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A, Shakibaei M (2011) Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 286(32):28556–28566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushra S, Ding W, Ali H, Kim Y, Khan S (2018) Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol 9:548

    Article  CAS  Google Scholar 

  • Chen S, Chen Y, Li Y, Chen S, Tan J, Ou T (2011) Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 19(18):5596–5604

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Du Z, Zheng X, Li D, Zhou R, Zhang K (2018) Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 13(4):742–752

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Hsu CH, Lin J, Hsu M, Ho Y, Shen T, Ko JY, Lin J, Lin B, Ming W, Yu H, Jee S, Chen G, Chen T, Chen C, Lai M, Pu Y, Pan M, Wang Y, Tsai C, Hsieh Y (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    CAS  PubMed  Google Scholar 

  • Cornago P, Claramunt R, Bouissane L, Alkorta I, Elguero J (2008) A study of the tautomerism of beta-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron 64:8089–8094

    Article  CAS  Google Scholar 

  • Da Costa JP (2017) A current look at nutraceuticals–key concepts and future prospects. Trends Food Sci Technol 62:68–78

    Google Scholar 

  • Daijiro Y, Hiroyasu T, Shigehiro M, Tomoko K, Koichi H, Nobuaki S, Ikuo T (2015) Novel curcumin derivatives as potent inhibitors of amyloid β aggregation. Biochem Biophys Rep 4:357–368

    Google Scholar 

  • Das S, Banerjee R, Bellare J (2005) Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs 18:203–212

    Google Scholar 

  • David B (2014) Long-term efficacy and toxicity of cholinesterase inhibitors in the treatment of Alzheimer disease. Can J Psychiatry 59(12):618–623

    Article  Google Scholar 

  • David O, Varun K, Ying S, Lahiri DK, Nigel H, Jack T, Xudong H (2012) N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res 9(6):746–758

    Article  Google Scholar 

  • Desai K (2010) Curcumin cyclodextrin combination for preventing or treating various diseases. Google Patents No. US20100179103A1

    Google Scholar 

  • Deshpande J, Kulkarni S (2016) Water soluble composition comprising curcumin having enhanced bioavailability and process thereof. Google Patents No. WO2012156979A1

    Google Scholar 

  • Din F, Aman W, Ullah I, Qureshi O, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309

    Article  PubMed  PubMed Central  Google Scholar 

  • Djiokeng PG, Sihem D, Ahlem Z, Charles R (2015) Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SKN-SH cell line: Role of Poly(lactideco-glycolide) polymeric matrix composition. Mol Pharm 13(2):391–403

    Google Scholar 

  • Doody R, Raman R, Farlow M, Iwatsubo T (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, Jun T, Paula C, Kavon R, Hou L (2012) Optimized turmeric extract reduces β-amyloid and phosphorylated tau protein burden in Alzheimer’s transgenic mice. Curr Alzheimer Res 9(4):500–506

    Article  Google Scholar 

  • Eybl V, Kotyzova D, Bludovska M (2004) The effect of curcumin on cadmium induced oxidative damage and trace elements level in the liver of rats and mice. Toxicol Lett 151:79–85

    Article  CAS  PubMed  Google Scholar 

  • Fan A, Alexeeff G (2010) Nanotechnology and nanomaterials: toxicology, risk assessment, and regulations. J Nanosci Nanotechnol 10:8646–8657

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Zheng Y, Liu X, Fang W, Chen X, Liao W, Jing X, Lei M, Tao E, Ma Q, Zhang X (2017) Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 25:1091–1102

    Article  CAS  Google Scholar 

  • Fonseca S, Gremião M, Chorilli M (2015) Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 10:4981–5003

    Article  CAS  Google Scholar 

  • Galimberti D, Scarpini E (2017) Pioglitazone for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 26(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Gary W, Prabha S, Zhaoping L, Karen J, Linda E, Natacha D, Jacqueline M, Koon-Pong W, Liu J, David A, Stephen T, Susanne M, Nagichettiar S, Sung-Cheng H, David H, Jorge R (2018) Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry 26(3):266–277

    Article  Google Scholar 

  • Gera M, Neelesh S, Mrinmoy G, Do Luong H, Sung J, Taesun M, Taeho K, Dong K (2017) Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget 8(39):66680–66698

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibellini L, Bianchini E, De B, Nasi M, Cossarizza A, Pinti M (2015) Natural compounds modulating mitochondrial functions. Evid Based Complement Alternat Med 1179:1–13

    Article  Google Scholar 

  • Giri R, Rajagopal V, Kalra V (2004) Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem 91:1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Gota V, Maru G, Soni T, Gandhi T, Kochar N, Agarwal MG (2010) Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem 58:2095–2099

    Article  CAS  PubMed  Google Scholar 

  • Gulati M, Chopra D, Singh S, Saluja V, Pathak P, Bansal P (2013) Patents on brain permeable nanoparticles. Recent Pat CNS Drug Discov 8:220–234

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. Am Assoc Pharm Scient J 15:195–218

    CAS  Google Scholar 

  • Hatcher H, Planalp R, Cho J, Torti F, Torti S (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu C, Cheng L (2007) Clinical studies with curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease. Springer, pp 471–480

    Google Scholar 

  • Huang W, Zhang X, Chen W (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4:519–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang N, Lu S, Liu X, Zhu J, Wang J, Liu T (2017) PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 8:81001–81013

    PubMed  PubMed Central  Google Scholar 

  • Hunter K (2018) Evaluation of the variation in growth, rhizome yield and rhizome phytochemical content among turmeric (Curcuma species) genotypes grown in North Alabama. Alabama Agric Mech Univ 7(4):3202–3211

    Google Scholar 

  • Indira Priyadarsini K (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19:2093–2100

    PubMed  Google Scholar 

  • Ireson C, Orr S, Jones J, Verschoyle R, Lim K, Luo L, Howells L, Plummer S, Jukes R, Williams M (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61:1058–1064

    CAS  PubMed  Google Scholar 

  • John M, Sally A, Gregory M, Donna L, Jeffrey L (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2(2):131–136

    Article  Google Scholar 

  • Kakkar V, Singh S, Singla D, Kaur IP (2011) Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res 55:495–503

    Article  CAS  PubMed  Google Scholar 

  • Kakkar V, Saini K, Adlakha S, Kaur IP (2018) Alzheimer’s disease: potential of nanotailored nutraceuticals. Nano 6:105–120

    Google Scholar 

  • Karthivashan G, Ganesan P, Park S, Kim J, Choi D (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 25:307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127:97–109

    Article  CAS  PubMed  Google Scholar 

  • Kavirayani IP (2014) The chemistry of curcumin: From extraction to therapeutic agent. Molecules 19:20091–20112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konstantina G, Sokratis G (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33

    Article  CAS  Google Scholar 

  • Kunnumakkara A, Bordoloi D, Padmavathi G, Monisha J, Roy K, Prasad S, Aggarwal B (2017) Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol 174:1325–1348

    Article  CAS  PubMed  Google Scholar 

  • Lao C, Ruffin M, Normolle D, Heath D, Murray S, Bailey J, Boggs M, Crowell J, Rock C, Brenner D (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee W, Loo Y, Bebawy M, Luk F, Mason S, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim P, Chu T, Yang F, Beech W, Frautschy A, Cole M (2011) The curry spice curcumin reduces oxidative damage and amyloidpathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    Article  Google Scholar 

  • Liu B, Moloney A, Meehan S, Morris K, Thomas S, Serpell L (2011) Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem 286:4248–4256

    Article  CAS  PubMed  Google Scholar 

  • Maiti P, Paladugu L, Dunbar L (2018) Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5x FAD mouse model of Alzheimer’s disease. BMC Neurosci 19(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • María L, Del Prado A, Isaac H, Caballero F (2018) Formulations of curcumin nanoparticles for brain diseases. Biomol Rev 9:56–62

    Google Scholar 

  • Martina Z (2019) Clinical aspects of Alzheimer’s disease. Clin Biochem 4:25–32

    Google Scholar 

  • Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar D (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 7:e32616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mecocci P, Tinarelli R, Schulz J, Polidori M (2014) Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front Pharmacol 5:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendiola P, Rodríguez C, Berumen L, García G (2016) The etiology of Alzheimer’s disease. Neurobiology 30:1–12

    Google Scholar 

  • Meng F, Meng F, Asghar S, Gao S, Su Z, Song J, Huo M, Meng W, Ping Q, Xiao Y (2015) A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf B: Biointerfaces 134:88–97

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Mythri R, Jagatha B, Pradhan N, Andersen J, Bharath M (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9:399–408

    Article  CAS  PubMed  Google Scholar 

  • Nima N, Wang H, Guo J, Sharma M, Luo W (2019) The complexity of tau in Alzheimer’s disease. Neurosci Lett 2:10–18

    Google Scholar 

  • Orlando A, Gonzales M, Royer E, Deck M, Vander L (2012) A chemical analog of curcumin as an improved inhibitor of amyloid Abeta oligomerization. PLoS One 7(3):31–38

    Article  CAS  Google Scholar 

  • Pan H, Huang M, Lin K (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494

    CAS  PubMed  Google Scholar 

  • Panahi Y, Hosseini S, Khalili N, Naimi E, Simental E, Majeed M, Sahebkar A (2016) Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother 82:578–582

    Article  CAS  PubMed  Google Scholar 

  • Panchanan M, Leela P, Gary L (2018) Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the FAD mouse model of Alzheimer’s disease. Neuroscience 19:7–11

    Google Scholar 

  • Pathan S, Iqbal Z, Zaidi S, Talegaonkar S, Vohra D, Jain GK, Azeem A, Jain N, Lalani JR, Khar RK, Ahmad FJ (2019) CNS drug delivery systems: novel approaches. Recent Pat Drug Deliv Formul 3:71–89

    Article  Google Scholar 

  • Pendurthi R, Rao V (2000) Suppression of transcription factor Egr-1 by curcumin. Thromb Res 97:179–189

    Article  CAS  PubMed  Google Scholar 

  • Prado D, Isaac H, Caballero A, Meza T, Néstor M, Maykel G, Benjamín F, Gerardo (2019) Formulations of curcumin nanoparticles for brain diseases. Biomol Ther 9:56

    Google Scholar 

  • Prasad S, Tyagi K, Aggarwal B (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice cancer research and treatment. Off J Korean Cancer Assoc 46:2

    CAS  Google Scholar 

  • Puglielli L, Tanzi E, Kovacs M (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci 6(4):345–351

    Article  CAS  PubMed  Google Scholar 

  • Ravindranath V, Chandrasekhara N (1980) Absorption and tissue distribution of curcumin in rats. Toxicology 16:259–265

    Article  CAS  PubMed  Google Scholar 

  • Rebecca S, Kristine L, Jung K, Kristine L, William E (2003) End-of life issues in the context of Alzheimer’s disease. Alzheimers Care Q 4(4):312–330

    Google Scholar 

  • Rebelo A, Molpeceres J, Rijo P, Pinto C (2017) Pancreatic cancer therapy review: from classic therapeutic agents to modern nanotechnologies. Curr Drug Metab 18:346–359

    Article  CAS  PubMed  Google Scholar 

  • Reddy P, Manczak M, Yin X, Grady M, Mitchell A, Tonk S, Kuruva C, Singh J, Ramesh, Murali V, Kumar S, Wang R, Jangampalli A, Gilbert O, Kavya T, Kandi Q, Boles A, Reddy A (2018) Protective effects of Indian spice curcumin against amyloid beta in Alzheimer’s disease. J Alzheimers Dis 61(3):843–866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinke A, Gestwicki E (2007) Structure–activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem Biol Drug Des 70:206–215

    Article  CAS  PubMed  Google Scholar 

  • Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringman M, Frautschy A, Cole M, Masterman L, Cummings L (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2:131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadegh S, Azadi A, Izadi Z, Kurd M, Dara T, Dibaei, Hamidi M (2019) Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: preparation, optimization, and pharmacokinetic evaluation. ACS Chem Neurosci 10:728–739

    Article  CAS  Google Scholar 

  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    Article  CAS  PubMed  Google Scholar 

  • Shome S, Talukdar D, Choudhury D, Bhattacharya K, Upadhyaya H (2016) Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J Pharm Pharmacol 68:1481–1500

    Article  CAS  PubMed  Google Scholar 

  • Shrikant M, Kalpana P (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Annu Indian Acad Neurol 11(1):13–19

    Article  Google Scholar 

  • Šimeček J, Schulz M, Notni J, Plutnar J, Kubíček V, Havlíčková J, Hermann P (2011) Complexation of metal ions with TRAP (1,4,7-triazacyclononane phosphinic acid) ligands and 1,4,7-triazacyclononane-1,4,7-triacetic acid: phosphinate-containing ligands as unique chelators for trivalent gallium. Inorg Chem 51:577–590

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Tønnesen HH, Vogensen SB, Loftsson T, Másson M (2010) Studies of curcumin and curcuminoids. XXXVI The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV–Vis titration. J Incl Phenom Macrocycl Chem 66:335–348

    Article  CAS  Google Scholar 

  • Skiba M, Luis P, Alfafara C, Billheimer D, Schneider C, Funk J (2018) Curcuminoid content and safety related markers of quality of turmeric dietary supplements sold in an urban retail market place in the United States. Mol Nutr Food Res 62:1800143

    Article  CAS  Google Scholar 

  • Smith D, Cappai R, Barnham K (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochem Biophys Acta 1768:1976–1990

    Article  CAS  PubMed  Google Scholar 

  • Soni K, Kuttan R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36(4):273–275

    CAS  PubMed  Google Scholar 

  • Strimpakos S, Sharma A (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–546

    Article  CAS  PubMed  Google Scholar 

  • Susan J, Hewlings H, Douglas S (2017) Curcumin: a review of it’s effects on human health. Foods 6(10):92

    Article  CAS  Google Scholar 

  • Tiwari S, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan K, Patel K, Srivastava V, Singh D, Gupta K, Tripathi A, Chaturvedi R, Gupta K (2013) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8:76–103

    Article  PubMed  CAS  Google Scholar 

  • Tønnesen H, Karlsen J (1985) Studies on curcumin and curcuminoids, kinetics of curcumin degradation in aqueous solution. Zeitschrift Lebensm Unters Forsch 180:402–404

    Article  Google Scholar 

  • Tsuyoshi H, Kenjiro O, Masahito Y (2010) Curcumin and Alzheimer’s disease. CNS Neurosci Ther 16:285–297

    Article  CAS  Google Scholar 

  • Tu P, Fu H, Cui M (2015) Compounds for imaging amyloid-β deposits in an Alzheimer’s brain: a patent review. Expert Opin Ther Pat 25:413–423

    Article  CAS  PubMed  Google Scholar 

  • Vareed S, Kakarala M, Ruffin M, Crowell J, Normolle D, Djuric Z, Brenner D (2008) Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomark Prev 17:1411–1417

    Article  CAS  Google Scholar 

  • Veldman E, Jia Z, Halldin C, Svedberg M (2016) Amyloid binding properties of curcumin analogues in Alzheimer’s disease postmortem brain tissue. Neurosci Lett 630:183–188

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wu X, Wang F, Wu X, Wang F, Liu S, Jia Z, Yang J (2006) The sensitive fluorimetric method for the determination of curcumin using the enhancement of mixed micelle. J Fluoresc 16:53–59

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Tan M, Zhong Z, Chen M, Wang Y (2011) Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. J Nanomater 6:51–63

    Google Scholar 

  • Wanninger S, Lorenz V, Subhanb A, Edelmann F (2015) Metal complexes of curcumin – synthetic strategies, structures and medicinal applications. Chem Soc Rev 44:4986–5002

    Article  CAS  PubMed  Google Scholar 

  • Yallapu M, Nagesh P, Jaggi M, Chauhan S (2015) Therapeutic applications of curcumin nanoformulations. Am Assoc Pharm Scient J 17:1341–1356

    CAS  Google Scholar 

  • Yang F, Lim G, Begum A, Ubeda O, Simmons M, Ambegaokar S, Chen P, Kayed R, Glabe C, Frautschy S, Cole G (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Browne A, Child D, Tanzi RE (2010) Curcumin decreases amyloid-β peptide levels by attenuating the maturation of amyloid β precursor protein. J Biol Chem 285(37):28472–28480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kakkar, V., Kumari, P., Adlakha, S., Kaur, I.P. (2019). Curcumin and Its Nanoformulations as Therapeutic for Alzheimer’s Disease. In: Rai, M., Yadav, A. (eds) Nanobiotechnology in Neurodegenerative Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-30930-5_14

Download citation

Publish with us

Policies and ethics