Skip to main content

High-Order Isogeometric Methods for Compressible Flows

I: Scalar Conservation Laws

  • Chapter
  • First Online:
Numerical Methods for Flows

Abstract

Isogeometric analysis was applied very successfully to many problem classes like linear elasticity, heat transfer and incompressible flow problems but its application to compressible flows is very rare. However, its ability to accurately represent complex geometries used in industrial applications makes IGA a suitable tool for the analysis of compressible flow problems that require the accurate resolution of boundary layers. The convection-diffusion solver presented in this chapter, is an indispensable step on the way to developing a compressible solver for complex viscous industrial flows. It is well known that the standard Galerkin finite element method and its isogeometric counterpart suffer from spurious oscillatory behaviour in the presence of shocks and steep solution gradients. As a remedy, the algebraic flux correction paradigm is generalized to B-Spline basis functions to suppress the creation of oscillations and occurrence of non-physical values in the solution. This work provides early results for scalar conservation laws and lays the foundation for extending this approach to the compressible Euler equations in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  2. Cottrell, J.A., Hughes, T.J.R., Bazilevs, T.J.R.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)

    Book  Google Scholar 

  3. Trontin, P.: Isogeometric analysis of Euler compressible flow. Application to aerodynamics. Conference: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2012)

    Google Scholar 

  4. Jaeschke, A.: Isogeometric analysis for compressible flows with application in turbomachinery. Master’s Thesis, Delft University of Technology (2015)

    Google Scholar 

  5. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  6. Kuzmin, D., Turek, S.: Flux correction tools for finite elements. J. Comput. Phys. 175(2), 525–558 (2002)

    Article  MathSciNet  Google Scholar 

  7. Kuzmin, D., Turek, S.: High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198(1), 131–158 (2004)

    Article  MathSciNet  Google Scholar 

  8. Kuzmin, D., Möller, M.: Flux-corrected transport, chapter algebraic flux correction I. In: Scalar Conservation Laws. Springer, Berlin (2005)

    Google Scholar 

  9. Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar Convection. J. Comput. Phys. 219(2), 513–531 (2006)

    Article  MathSciNet  Google Scholar 

  10. Kuzmin, D.: Algebraic flux correction for finite element discretizations of coupled systems. In: Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering II, CIMNE, Barcelona, pp. 653–656 (2007)

    Google Scholar 

  11. Kuzmin, D., Möller, M., Shadid, J.N., Shashkov, M.: Failsafe flux limiting and constrained data projections for equations of gas dynamics. J. Comput. phys. 229(23), 8766–8779, 11 (2010)

    Article  MathSciNet  Google Scholar 

  12. Kuzmin, D.: Flux-corrected transport, chapter Algebraic flux correction I. In: Scalar Conservation Laws. Springer, Berlin (2012)

    Google Scholar 

  13. Kuzmin, D., Möller, M., Gurris, M.: Flux-corrected transport, chapter Algebraic flux correction II. Compressible Flow Problems. Springer, Berlin (2012)

    Chapter  Google Scholar 

  14. de Boor, C.: Subroutine package for calculating with B-splines. Technical Report LA-4728-MS. Los Alamos National Laboratory, New Mexico (1971)

    Google Scholar 

  15. Fletcher, C.A.J.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37, 225–243 (1983)

    Article  MathSciNet  Google Scholar 

  16. Farago, I., Horvath, R., Korotov, S.: Discrete maximum principle for linear parabolic problems solved on hybrid meshes. Appl. Numer. Math. 53(2–4), 249–264, 05 (2004)

    Article  MathSciNet  Google Scholar 

  17. Kuzmin, D., Shashkov, M.J., Svyatski, D.: A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems on arbitrary meshes. J. Comput. Phys. 228, 3448–3463 (2009)

    Article  MathSciNet  Google Scholar 

  18. Godunov, S.K.: Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sbornik 47, 271–306 (1959)

    MATH  Google Scholar 

  19. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4),1715–1735, 08 (2011)

    Article  MathSciNet  Google Scholar 

  20. Möller, M.: Efficient solution techniques for implicit finite element schemes with flux limiters. Int. J. Numer. Methods Fluids 55(7), 611–635, 11 (2007)

    Article  MathSciNet  Google Scholar 

  21. Jüttler, B., Langer, U., Mantzaflaris, A., Moore, A., Zulehner, W.: Geometry + simulation modules: implementing isogeometric analysis. Proc. Appl. Math. Mech. 14(1), 961–962 (2014); Special Issue: 85th Annual Meeting of the Int. Assoc. of Appl. Math. and Mech. (GAMM), Erlangen (2014)

    Google Scholar 

  22. Giannelli, C., Jüttler, B., Speleers, H.: Thb-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29(7), 485–498, 10 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work has been supported by the European Unions Horizon 2020 research and innovation programme under grant agreement No. 678727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Jaeschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaeschke, A., Möller, M. (2020). High-Order Isogeometric Methods for Compressible Flows. In: van Brummelen, H., Corsini, A., Perotto, S., Rozza, G. (eds) Numerical Methods for Flows. Lecture Notes in Computational Science and Engineering, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-030-30705-9_3

Download citation

Publish with us

Policies and ethics