Skip to main content

Chain Orientation

  • Chapter
  • First Online:
Fundamental Polymer Science

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Chain orientation is a phenomenon unique to polymers. The unidimensional nature of the linear polymer chain makes it possible to obtain strongly anisotropic properties. The anisotropy arises when molecules are aligned along a common director (Fig. 9.1). The intrinsic properties of a polymer chain are strongly directionally dependent. The strong covalent bonds along the chain axis and the much weaker secondary bonds in the transverse directions cause significant anisotropy of any given tensor property (x) (Fig. 9.1). The concept of orientation would be meaningless if the chain-intrinsic properties were isotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni, S. M., & Sibilia, J. P. (1979). Polymer Engineering and Science, 19, 450.

    Article  Google Scholar 

  • Alteyrac, J., Cloutier, A.”., Ung, C.-H., & Zhang, S. Y. (2006). Wood and Fiber Science, 38, 229.

    Google Scholar 

  • Beer, M. (1956). Proceedings. Royal Society of London, A236, 136.

    ADS  Google Scholar 

  • Bettelheim, F. A., & Stein, R. S. (1958). Journal of Polymer Science, 27, 567.

    Article  ADS  Google Scholar 

  • Djahedi, C., Bergenstråhle-Wohlert, M., Berglund, L. A., & Wohlert, J. (2016). Cellulose, 23, 2315.

    Article  Google Scholar 

  • Folkes, M. J., & Keller, A. (1971). Polymer, 12, 222.

    Article  Google Scholar 

  • Gedde, U. W., Andersson, H., Hellermark, C., Jonsson, H., Sahlén, F., & Hult, A. (1993). Progress in Colloid and Polymer Science, 92, 129.

    Article  Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020a). Applied polymer science. Berlin and New York: Springer Nature; Chapter 3.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020b). Applied polymer science. Berlin and New York: Springer Nature; Chapter 8.

    Google Scholar 

  • Hedmark, P. G., Rego Lopez, J. M., Westdahl, M., Werner, P.-E., & Gedde, U. W. (1988). Polymer Engineering and Science, 28, 1248.

    Article  Google Scholar 

  • Hermans, P. H. (1946). Physics of cellulose fibres. Amsterdam: Elsevier.

    Google Scholar 

  • Holliday, L., & White, J. W. (1971). Pure and Applied Chemistry, 26, 245.

    Article  Google Scholar 

  • in’t Veld, P. J., & Stevens, M. J. (2008). Biophysical Journal, 95, 33.

    Article  ADS  Google Scholar 

  • Kalb, B., & Pennings, A. J. (1980). Journal of Materials Science, 15, 2584.

    Article  ADS  Google Scholar 

  • Kretschmann, D. E. (2010). Mechanical properties of wood, in chapter 5. In Wood handbook – wood as an engineering material (p. 2010). Madison: Forest Products Laboratory, United States Department of Agriculture, Forest Service.

    Google Scholar 

  • Larkin, P. J. (2017). Infrared and Raman spectroscopy. Oxford: Elsevier.

    Google Scholar 

  • Lorentz, H. A. (1880). Annales de Physique, 9, 641.

    Article  Google Scholar 

  • Lorenz, L. (1880). Annales de Physique, 11, 70.

    Article  Google Scholar 

  • Mackley, M. R., & Keller, A. (1973). Polymer, 14, 16.

    Article  Google Scholar 

  • McKittrick, J., Chen, P.-Y., Bodde, S. G., Yang, W., Novitskaya, E. E., & Meyers, M. A. (2012). Journal of the Minerals, Metals and Materials Society, 64, 449.

    Article  Google Scholar 

  • Mitchell, G. R. (1984). Polymer, 25, 1562.

    Article  Google Scholar 

  • Peterlin, A. (1979). Mechanical properties of fibrous polymers. In A. Ciferri & I. M. Ward (Eds.), Ultrahigh modulus polymers (p. 279). London: Applied Science Publishers.

    Google Scholar 

  • Prevorsek, D. C. (1996). Spectra: The latest entry in the field of high-performance fibers. New York: Marcel Dekker.

    Google Scholar 

  • Sadler, D. M., & Barham, P. J. (1990). Polymer, 31, 46.

    Article  Google Scholar 

  • Samuels, R. J. (1974). Structured polymer properties: The identification, interpretation and application of crystalline polymer structure. New York: Wiley.

    Google Scholar 

  • Shoulders, M. D., & Raines, R. T. (2009). Annual Review of Biochemistry, 78, 929.

    Article  Google Scholar 

  • Smith, P., & Lemstra, P. J. (1979). Macromolecular Chemistry, 180, 2983.

    Article  Google Scholar 

  • Smith, P., & Lemstra, P. J. (1980a). Polymer, 21, 1341.

    Article  Google Scholar 

  • Smith, P., & Lemstra, P. J. (1980b). Journal of Materials Science, 15, 505.

    Article  ADS  Google Scholar 

  • Smith, P., Lemstra, P. J., Kalb, B., & Pennings, A. J. (1979). Polymer Bulletin, 1, 733.

    Article  Google Scholar 

  • Smith, P., Lemstra, P. J., & Booij, H. C. (1981). Journal of Polymer Science, Polymer Physics Edition, 19, 877.

    Article  ADS  Google Scholar 

  • Smith, J. F., Knowles, T. P., Dobson, C. M., MacPhee, C. E., & Welland, M. E. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 15806.

    Article  ADS  Google Scholar 

  • Struik, L. C. E. (1990). Internal stresses, dimensional instabilities and molecular orientation in plastics. Chichester: Wiley.

    Google Scholar 

  • van der Rijt, J. A. J., van der Werf, K. O., Bennink, M. L., Dijkstra, P. J., & Feijen, J. (2006). Macromolecular Bioscience, 6, 697.

    Article  Google Scholar 

  • Weibull, W. (1951). Journal of Applied Mechanics – Transactions of the ASME, 18, 293.

    ADS  Google Scholar 

  • Wenger, M. P. E., Bozec, L., Horton, M., & Mesquida, P. (2007). Biophysical Journal, 93, 1255.

    Article  ADS  Google Scholar 

  • Ye, X., Junel, K., Gällstedt, M., Langton, M., Wei, X., Lendel, C., & Hedenqvist, M. S. (2018). ACS Sustainable Chemistry & Engineering, 6, 5462.

    Article  Google Scholar 

  • Young, R. J. (1988). Materials Forum (Australia), 11, 210.

    Google Scholar 

  • Zachariades, A. E., Mead, W. T., & Porter, R. S. (1979). Recent developments in ultramolecular orientation of polyethylene by solid state extrusion. In A. Ciferri & I. M. Ward (Eds.), Ultrahigh Modulus Polymers (p. 77). London: Applied Science Publishers.

    Google Scholar 

  • Zwijnenburg, A., & Penning, A. J. (1978). Colloid & Polymer Science, 259, 868.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedde, U.W., Hedenqvist, M.S. (2019). Chain Orientation. In: Fundamental Polymer Science. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-29794-7_9

Download citation

Publish with us

Policies and ethics