Skip to main content

The Molten State

  • Chapter
  • First Online:
Fundamental Polymer Science

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Rheology, which is the first topic of this chapter, is the discipline which expresses relationships between stress and strain in liquids. This is an essential base for polymer processing. The molten state of polymers is more dependent on the molar mass than any of the other physical states. Flexible-chain polymer molecules possess random conformations in the molten state and the coiled molecules entangle in high molar mass polymers. Chain entanglements are important for the rheological properties of the melt. The second part of this chapter deals with the rheology of flexible-chain polymer melts. A discussion is presented of the deformation mechanisms in entangled melts involving reptation, also including the theoretical aspects. The final section of this chapter presents a comprehensive review of the structure and properties (also including the rheological properties) of liquid crystalline polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonietti, M., Folsch, K. J., & Sillescu, H. (1987). Makromolekulare Chemie, 188, 2217.

    Article  Google Scholar 

  • Bawden, F. C., & Pirie, N. W. (1937). Proceedings of the Royal Society of London. Series B, 123, 274.

    Article  ADS  Google Scholar 

  • Berger, K., & Balauff, M. (1988). Molecular Crystals and Liquid Crystals, 157, 109.

    Google Scholar 

  • Biswas, A., & Blackwell, J. (1988). Macromolecules, 21, 3146.

    Article  ADS  Google Scholar 

  • Blumstein, A., & Thomas, 0. (1982). Macromolecules, 15, 1264.

    Article  ADS  Google Scholar 

  • Boyd, R. H., & Smith, G. D. (2007). Polymer dynamics and relaxation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Calundann, G. W., & Jaffe, M. (1982). Anisotropic polymers, their synthesis and properties. In Proceedings of the Robert E. Welsh conference on chemical research XXVI (p. 247). Houston: Synthetic Polymers.

    Google Scholar 

  • Chandrasekhar, S. (1977). Liquid crystals. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chaunier, L., Della Valle, G., Dalgalarrondo, M., Lourdin, D., Marion, D., & Leroy, E. (2017). Rheologica Acta, 56, 941.

    Article  Google Scholar 

  • Chhajer, M., Chen, E., & Cheng, S. Z. D. (2001). Journal of Macromolecular Science, Physics, B40, 615.

    Article  ADS  Google Scholar 

  • Collier, B. J., Dever, M., Petrovan, S., Collier, J. R., Li, Z., & Wei, X. (2000). Journal of Polymers and the Environment, 8, 151.

    Article  Google Scholar 

  • Cosgrove, T., Griffiths, P. C., Hollingshurst, J., Richards, R. D. C., & Semiyen, J. A. (1992). Macromolecules, 25, 6761.

    Article  ADS  Google Scholar 

  • Cottis, S. G., Economy, J., & Novak, B. E. (1972). US Patent 3 637 595.

    Google Scholar 

  • de Gennes, P. G. (1971). The Journal of Chemical Physics, 55, 572.

    Article  ADS  Google Scholar 

  • de Gennes, P. G. (1974). The physics of liquid crystals. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • de Gennes, P. G. (1979). Scaling concepts in polymer physics. Ithaca and London: Cornell University Press.

    Google Scholar 

  • Demus, D., & Richter, L. (1978). Textures of liquid crystals. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie.

    Google Scholar 

  • Doi, M. (1982). Journal of Polymer Science, Polymer Physics Edition, 20, 1963.

    Article  ADS  Google Scholar 

  • Doi, M., & Edwards, S. F. (1986). The theory of polymer dynamics. Oxford: Clarendon Press.

    Google Scholar 

  • Donald, A. M., & Windle, A. H. (1992). Liquid crystalline polymers. Cambridge: Cambridge University Press.

    Google Scholar 

  • Edwards, S. F. (1977). Polymer, 9, 140.

    Google Scholar 

  • Engberg, K., Strömberg, 0., Martinsson, J., & Gedde, U. W. (1994a). Polymer Engineering and Science, 34, 1336.

    Article  Google Scholar 

  • Engberg, K., Ekblad, M., Werner, P.-E., & Gedde, U. W. (1994b). Polymer Engineering and Science, 34, 1346.

    Article  Google Scholar 

  • Farrington, P. J., Hawker, C. J., Frechet, J. M. J., & Mackay, M. E. (1998). Macromolecules, 31, 5043.

    Article  ADS  Google Scholar 

  • Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). New York: Wiley.

    Google Scholar 

  • Finkelmann, H., Happ, M., Portugall, M., & Ringsdorf, H. (1978). Makromolekulare Chemie, 179, 2541.

    Article  Google Scholar 

  • Finkelmann, H., & Rehage, G. (1984). Advances in Polymer Science, 60–61, 99.

    Article  Google Scholar 

  • Flory, P. J. (1956). Proceedings of the Royal Society, 234A, 73.

    ADS  Google Scholar 

  • Flory, P. J., & Ronca, G. (1979). Molecular Crystals and Liquid Crystals, 54, 269.

    Google Scholar 

  • Gedde, U. W., Jonsson, H., Hult, A., & Percec, V. (1992). Polymer, 33, 4352.

    Article  Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020a). Applied polymer science. Berlin and New York: Springer Nature; Chapter 8.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020b). Applied polymer science. Berlin and New York: Springer Nature; Chapter 6.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020c). Applied polymer science (pp. 1–3). Berlin and New York; Springer Nature; Chapters 1–3.

    Google Scholar 

  • Graessley, W. W. (1982). Advances in Polymer Science, 47, 68.

    Google Scholar 

  • Graessley, W. W. (1984). Viscoelasticity and flow in polymer melts and concentrated solutions. In J. Mark & J. E (Eds.), Physical properties of polymers (2nd ed.). Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Gray, G. W., & Goodby, J. W. (1984). Smectic liquid crystals. Glasgow: Leonard Hill.

    Google Scholar 

  • Green, P. F., Mills, P. J., Palmstrom, C. J., Mayer, J. W., & Kramer, E. J. (1984). Physical Review Letters, 53, 2145.

    Article  ADS  Google Scholar 

  • Green, P. F. (1996). Translational dynamics of polymer melts. In P. Neogi (Ed.), Diffusion in polymers. New York: Marcel Dekker.

    Google Scholar 

  • Gutierrez, G. A., Chivers, R. A., Blackwell, J., Stamatoff, J. B., & Yoon, H. (1983). Polymer, 24, 937.

    Article  Google Scholar 

  • Hawker, C. J., Farrington, P. J., Mackay, M. E., Wooley, K. I., & Frechet, J. M. J. (1995). Journal of the American Chemical Society, 117, 4409.

    Article  Google Scholar 

  • Hermans, P. H. (1946). Physics of cellulose fibres. Amsterdam: Elsevier.

    Google Scholar 

  • Hung, J.-H., Mangalara, J. H., & Simmons, D. S. (2018). Macromolecules, 51, 2887.

    Article  ADS  Google Scholar 

  • Ishihara, A. (1951). The Journal of Chemical Physics, 19, 1142.

    Article  ADS  Google Scholar 

  • Jackson, W. J., & Kuhfuss, H. F. (1976). Journal of Polymer Science, Polymer Chemistry Edition, 14, 2043.

    Article  ADS  Google Scholar 

  • Jo, B.-W., Lenz, R. W., & Lin, J.-1. (1982). Macromolecular Chemistry Rapid Communication, 3, 23.

    Article  Google Scholar 

  • Jud, K., Kausch, H. H., & Williams, J. G. (1981). Journal of Materials Science, 16, 204.

    Article  ADS  Google Scholar 

  • Klein, J. (1978). Nature, 271, 243.

    Article  Google Scholar 

  • Kwolek, S. L. (1971). DuPont, US Patent, 3 600 350.

    Google Scholar 

  • Lin, J.-I., Antoun, S., Ober, C., & Lenz, R. W. (1980). British Polymer Journal, 12, 132.

    Google Scholar 

  • Lodge, T. P. (1999). Physical Review Letters, 83, 3218.

    Article  ADS  Google Scholar 

  • Magda, J. J., Baek, S.-G., DeVries, K. L., & Larson, R. G. (1991). Macromolecules, 24, 4460.

    Article  ADS  Google Scholar 

  • Maier, W., & Saupe, A. (1959). Zeitschrift für Naturforschung, 14a, 862.

    ADS  Google Scholar 

  • Maier, W., & Saupe, A. (1960). Zeitschrift für Naturforschung, 15a, 287.

    ADS  Google Scholar 

  • Marucci, G. (1991). Macromolecules, 24, 4176.

    Article  ADS  Google Scholar 

  • McArdle, C. B. (Ed.). (1989). Side-chain liquid crystal polymers. New York: Chapman & Hall.

    Google Scholar 

  • Meurisse, P., Noel, C., Monnerie, L., & Fayolle, B. (1981). British Polymer Journal, 13, 55.

    Article  Google Scholar 

  • Miao, X.-P., Guo, Y.-S., He, L.-F., Meng, Y., & Li, X.-Y. (2015). Chinese Journal of Polymer Science, 33, 1574.

    Article  Google Scholar 

  • Miller, A. A. (1963). Journal of Polymer Science: Part A, 1, 1857.

    Google Scholar 

  • Mills, P. J., Green, P. F., Palmstrom, C. J., Mayer, J. W. And Kramer, R. J. (1984) Applied Physics Letters 45, 957.

    Article  ADS  Google Scholar 

  • Onagi, S., & Asada, T. (1980). Rheology and rheo-optics of polymer liquid crystals. In G. Astarita, G. Marucci, & L. Nicolais (Eds.), Rheology (Vol. 1). New York: Plenum.

    Google Scholar 

  • Onsager, L. (1949). Annals of the New York Academy of Sciences, 51, 627.

    Article  ADS  Google Scholar 

  • Paul, W., Smith, G. D., & Yoon, D. Y. (1997). Macromolecules, 30, 7772.

    Article  ADS  Google Scholar 

  • Pearson, D. S., Ver Strate, G., von Meerwall, E., & Schilling, F. C. (1987). Macromolecules, 20, 1133.

    Article  ADS  Google Scholar 

  • Robinson, C. (1956). Transactions of the Faraday Society, 52, 571.

    Article  Google Scholar 

  • Rubinstein, M., & Colby, R. H. (2003). Polymer physics, Chapter 9. Oxford: Oxford University Press.

    Google Scholar 

  • Rouse, P. E. (1953). The Journal of Chemical Physics, 21, 1272.

    Article  ADS  Google Scholar 

  • Samulski, E. T. (1993). The mesomorphic state. In J. E. Mark (Ed.), Physical properties of polymers (2nd ed.). Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Shull, K. R., Kramer, E. J., Hadziiaounnou, G., Antonietti, M., & Sillescu, H. (1988). Macromolecules, 21, 2578.

    Article  ADS  Google Scholar 

  • Strobl, G. (1997). The physics of polymers (2nd ed.). Berlin, Heidelberg and New York: Springer. Chapter 6.

    Book  Google Scholar 

  • Sun, H., & Wang, S.-Q. (2012). Science China Chemistry, 55, 779.

    Article  Google Scholar 

  • Tande, B. M., Wagner, N. J., & Kim, Y. H. (2003). Macromolecules, 36, 4619.

    Article  ADS  Google Scholar 

  • Tead, S. F., Kramer, E. J., Hadziioannou, G., Antonietti, M., Sillescu, H., Lutz, P., & Strazielle, C. (1992). Macromolecules, 25, 3942.

    Article  ADS  Google Scholar 

  • Ullsten, N. H., Gällstedt, M., Johansson, E., & Hedenqvist, M. S. (2006). Biomacromolecules, 7, 771.

    Article  Google Scholar 

  • Uppuluri, S., Keinath, S. E., Tomalia, D. A., & Dvornic, P. R. (1998). Macromolecules, 31, 4498.

    Article  ADS  Google Scholar 

  • Uppuluri, S., Morrison, F. A., & Dvornic, P. R. (2000). Macromolecules, 33, 2551.

    Article  ADS  Google Scholar 

  • Vasilev, V. G., Kramarenko, E. Y., Tatarinova, E. A., Milenin, S. A., Kalinina, A. A., Papkov, V. S., & Muzafarov, A. M. (2018). Polymer, 146, 1.

    Article  Google Scholar 

  • Vertogen, G. and de Jeu, W. H. (1988) Thermotropic liquid crystals: Fundamentals, springer series in chemical physics45, Springer, Berlin.

    Book  Google Scholar 

  • Villar, M. A., Thomas, E. L., & Armstrong, R. C. (1995). Polymer, 36, 1869.

    Article  Google Scholar 

  • Windle, A. H., Viney, C., Golombeck, R., Donald, A. M., & Mitchell, D. R. (1985). Faraday Discussions of the Chemical Society, 79, 55.

    Article  Google Scholar 

  • Zacharopoulos, N., & Economou, L. G. (2002). Macromolecules, 35, 1814.

    Article  ADS  Google Scholar 

  • Zhang, S., Li, F.-X., & Yu, J.-Y. (2011). Cellulose Chemistry and Technology, 45, 313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedde, U.W., Hedenqvist, M.S. (2019). The Molten State. In: Fundamental Polymer Science. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-29794-7_6

Download citation

Publish with us

Policies and ethics