Skip to main content

The Glassy Amorphous State

  • Chapter
  • First Online:
Fundamental Polymer Science

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3193 Accesses

Abstract

Liquid polymers are transformed into a glass if the chain structure is irregular and the polymer in unable to crystallise, not even at the slowest possible cooling rate, or if the polymer (also being a polymer with a regular structure) is cooled at such a high rate that does not permit crystallisation. The transformation of the liquid to a glass occurs at the glass transition temperature, which is accompanied by a 200 to 1000-fold increase in the Young’s modulus. A comprehensive account is presented for the factors (repeating unit, molecular architecture, plasticizing compounds, etc.) that affect the glass transition temperature. The glass transition is a second order phase transformation, but not in the strict Ehrenfest sense. The glass transition is a kinetic phenomenon and glassy polymers undergo slow structural and property changes approaching equilibrium referred to as physical aging. The gradual approach towards equilibrium in volume and enthalpy is thoroughly described, which also includes the KAHR model. The current theories for the glass transition can be divided into three main groups: free volume, kinetic and equilibrium theories; all three are comprehensively described. Molecular dynamic simulation and related techniques as well as micro-level experimental techniques such as positron annihilation lifetime spectroscopy and neutron scattering have provided further insight about the structure and dynamics of polymer glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, G., & Gibbs, J. H. (1965). The Journal of Chemical Physics, 43, 139.

    Article  ADS  Google Scholar 

  • Bair, H. E. (1970). Polymer Engineering and Science, 10, 247.

    Article  Google Scholar 

  • Baschnagel, J., Bennemann, C., Paul, W., & Binder, K. (2000). Journal of Physics. Condensed Matter, 12, 6365.

    Article  ADS  Google Scholar 

  • Beaman, R. G. (1953). Journal of Polymer Science, 9, 472.

    Google Scholar 

  • Beevers, R. B., & White, E. F. T. (1960). Transactions of the Faraday Society, 56, 744.

    Article  Google Scholar 

  • Bennemann, C., Donati, C., Baschnagel, J., & Glotzer, S. C. (1999) Nature, 399, 246.

    Google Scholar 

  • Boyd, R. H. (1996). Trends in Polymer Sciences, 4, 12.

    Google Scholar 

  • Boyd, R. H. (1998) Proceedings Symposium on Polymeric Barrier Materials, Packforsk, Sweden.

    Google Scholar 

  • Boyd, R. H., & Breitling, S. M. (1974). Macromolecules, 7, 855.

    Article  ADS  Google Scholar 

  • Boyd, R. H., & Smith, G. D. (2007). Polymer dynamics and relaxation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Boyd, R. H., Gee, R. H., Han, J., & Yin, Y. (1994). The Journal of Chemical Physics, 101, 788.

    Article  ADS  Google Scholar 

  • Boyer, R. F. (1952). 2nd International Conference on Physical Chemistry, Paris, June 6.

    Google Scholar 

  • Boyer, R. F. (1954). Journal of Applied Physics, 25, 825.

    Article  ADS  Google Scholar 

  • Boyer, R. F. (1963). Rubber Chemistry and Technology, 36, 1303.

    Article  Google Scholar 

  • Brandt, W., Berko, S., & Walker, W. W. (1960). Physics Review, 120, 1289.

    Article  ADS  Google Scholar 

  • Bueche, F. (1956). Journal of Chemical Physics, 24, 418.

    Google Scholar 

  • Bueche, F. (1959). The Journal of Chemical Physics, 30, 748.

    Article  ADS  Google Scholar 

  • Bunn, C. W. (1953). Chapter 12. In R. Hill (Ed.), Fibres from Synthetic Polymers. Amsterdam: Elsevier.

    Google Scholar 

  • Chong, S.-H., Aichele, M., Meyer H., Fuchs, M., & Baschnagel, J. (2007). Phys. Rev. E., 76, 051806.

    Google Scholar 

  • Cohen, H. H., & Turnbull, D. (1959). The Journal of Chemical Physics, 31, 1164.

    Article  ADS  Google Scholar 

  • Cotton, J. P., Decker, D., Benoit, H., Farnoux, B., Higgins, J., Jannink, G., Ober, R., Picot, C., & desCloizeaux, J. (1974). Macromolecules, 7, 863.

    Article  ADS  Google Scholar 

  • Couchman, P. R. (1978). Macromolecules, 11, 1156.

    Article  ADS  Google Scholar 

  • Cowie, J. M. G., & Toporowski, P. M. (1968). European Polymer Journal, 4, 621.

    Article  Google Scholar 

  • Davies, R. O., & Jones, G. O. (1953). Advances in Physics, Philosophical Magazine Supplement, 2, 370.

    Google Scholar 

  • De Bolt, M. A., Easteal, A. J., Macedo, P. B., & Moynihan, C. T. (1976). Journal of the American Ceramic Society, 59, 16.

    Article  Google Scholar 

  • Delin, M. (1996) Ph. D. Thesis: Volumetric Analysis in Mechanical Behaviour and Physical Aging of Polymers, Department of Polymeric Materials, Chalmers University of Technology, Gothenburg, Sweden.

    Google Scholar 

  • Delin, M., Rychwalski, R. W., Kubát, J., Klason, C., & Hutchinson, J. M. (1996). Polymer Engineering and Science, 36, 2955.

    Article  Google Scholar 

  • DiMarzio, E. A. (1981). Equilibrium theory of glasses. In J. M. O. O’Reilly & M. Goldstein (Eds.), Annals of the New York Academy of Sciences 371 Structure and Mobility in Molecular and Atomic Glasses. New York: New York Academy of Sciences.

    Google Scholar 

  • DiMarzio, E. A., & Yang, A. J. M. (1997). Journal of Research of the National Institute of Standards and Technology, 102, 135.

    Article  Google Scholar 

  • Doolittle, A. K. (1951). Journal of Applied Physics, 22, 1471.

    Article  ADS  Google Scholar 

  • Ehrenfest, P. (1933). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 36, 153.

    Google Scholar 

  • Eisenberg, A. (1984). The glassy state. In Physical Properties of Polymers. Washington, DC: American Chemical Society.

    Google Scholar 

  • Eisenberg, A. (1993). The glassy state and the glass transition. In Physical Properties of Polymers (2nd ed.). Washington, DC: American Chemical Society.

    Google Scholar 

  • Eldrup, M., Lightbody, D., & Sherwood, J. M. (1981). Chemical Physics, 63, 51.

    Article  ADS  Google Scholar 

  • Enns, J. B., & Gillham, J. K. (1983). Journal of Applied Polymer Science, 28, 2567.

    Article  Google Scholar 

  • Ferry, J. D. (1980). Viscoelastic properties of polymers. New York: Wiley.

    Google Scholar 

  • Fox, T. G. (1956). Bulletin of the American Physical Society, 1, 123.

    Google Scholar 

  • Fox, T. G., & Flory, P. J. (1954). Journal of Polymer Science, 14, 315.

    Article  ADS  Google Scholar 

  • Fulcher, G. S. (1925). Journal of the American Ceramic Society, 8, 339.

    Article  Google Scholar 

  • Gedde, U. W. (2020). Essential Classical Thermodynamics, Berlin and New York; Springer Nature.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020a). Applied polymer science. Berlin and New York: Springer Nature; Chapter 1.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020b). Applied Polymer Science. Berlin and New York: Springer Nature; Chapter 8.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020c). Applied polymer science. Berlin and New York: Springer Nature; Chapters 6 and 7.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020d). Applied polymer science. Berlin and New York: Springer Nature; Chapter 7.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020e) Applied polymer science. Berlin and New York, Chapter 5.

    Google Scholar 

  • Gibbs, J. H., & DiMarzio, E. A. (1958). The Journal of Chemical Physics, 28, 373.

    Article  ADS  Google Scholar 

  • Goodwin, A. A., & Hay, J. N. (1990). Polymer Communication, 31, 338.

    Google Scholar 

  • Gordon, M., & Taylor, J. S. (1952). Journal of Applied Chemistry, 2, 493.

    Article  Google Scholar 

  • Han, J., Gee, R. H., & Boyd, R. H. (1994). Macromolecules, 27, 7781.

    Article  ADS  Google Scholar 

  • Heijboer, J. (1965). Physics of non-crystalline solids. Amsterdam: North-Holland.

    Google Scholar 

  • Helfferich, J., Ziebert, F., Frey, S., Meyer, H., Farago, J., Blumen, A., & Baschnagel, J. (2014). Physics Reviews E, 89, 042603.

    Google Scholar 

  • Jin, Y., & Boyd, R. H. (1998). The Journal of Chemical Physics, 108, 9912.

    Article  ADS  Google Scholar 

  • Kauzmann, W. (1948). Chemical Reviews, 43, 219.

    Article  Google Scholar 

  • Kirste, R. G., Kruse, W. A., & Ibel, K. (1975). Polymer, 16, 120.

    Article  Google Scholar 

  • Kohlrausch, R. (1847). Pogg Ann Phys, 12, 393.

    Google Scholar 

  • Kovacs, A. J. (1963). Fortschritte der Hochpolymoren-Forschung, 3, 394.

    Article  Google Scholar 

  • Kovacs, A. J., Aklonis, J. J., Hutchinson, J. M., & Ramos, A. R. (1979). Journal of Polymer Science, Polymer Physics Edition, 17, 1097.

    Article  ADS  Google Scholar 

  • Lee, W. A., & Knight, G. J. (1970). British Polymer Journa, 2, 75.

    Google Scholar 

  • Lin, Y.-H. (1990). Macromolecules, 23, 5292.

    Article  ADS  Google Scholar 

  • Lovell, R., Mitchell, G. R., & Windle, A. H. (1979). Faraday discuss. Chemical Society, 68, 46.

    Google Scholar 

  • McCammon, R. D., Saba, R. G., & Work, R. N. (1969). Journal of Polymer Science: Part A2, 7, 1271.

    Google Scholar 

  • McCrum, N. G., Read, B. E., & Williams, G. (1967). Anelastic and dielectric effects in polymeric solids. London, New York and Sidney: Wiley.

    Google Scholar 

  • McKenna, G. B. (1989). Glass formation and glassy behavior. In C. Booth & C. Price (Eds.), Comprehensive Polymer Science, Vol. 2, Polymer Properties (pp. 311–362). Oxford: Pergamon Press.

    Google Scholar 

  • McKenna, G. B. (1994). Journal of Non-Crystalline Solids, 172-174, 756.

    Article  ADS  Google Scholar 

  • McKenna, G. B., Leterrier, Y., & Schultheisz, C. R. (1993). Use of plastics and plastic composites: Materials and mechanics issues (Vol. MD-46, p. 245). New York: ASME.

    Google Scholar 

  • McKenna, G. B., Letterier, Y., & Schultheisz, C. R. (1995). Polymer Engineering and Science, 35, 403.

    Article  Google Scholar 

  • McKinney, J. E., & Goldstein, M. (1974). Journal of Research of the National Bureau of Standards–A. Physics and Chemistry, 78A, 331.

    Article  Google Scholar 

  • Moynihan, C. T., Easteal, A. J., DeBolt, M. A., & Tucker, J. (1976a). Journal of the American Ceramic Society, 59, 12.

    Article  Google Scholar 

  • Moynihan, C. T., Macedo, P. B., Montrose, C. J., Gupta, P. K., DeBolt, M. A., Dill, J. F., Dom, B. E., Drake, P. W., Esteal, A. J., Elteman, P. B., Moeller, R. P., Sasabe, H., & Wilder, J. A. (1976b). Annals of the New York Academy of Sciences, 279, 15.

    Article  ADS  Google Scholar 

  • Narayanaswamy, O. S. (1971). Journal of the American Ceramic Society, 54, 491.

    Article  Google Scholar 

  • Rietsch, F., Daveloose, D., & Froelich, D. (1976). Polymer, 17, 859.

    Article  Google Scholar 

  • Robertson, R. E. (1992). Free volume theory and its application to polymer relaxation in the glassy state. In J. E. Bicerano (Ed.), Computational modeling of polymers. New York: Marcel Dekker.

    Google Scholar 

  • Robertson, C. G., & Wilkes, G. L. (1998). Structural relaxation and fragility of glass-forming miscible blends composed of atactic polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide). In M. R. Tant & A. J. Hill (Eds.), Structure and Properties of Glassy Polymers (ACS Symposium Series 710). Washington, DC: American Chemical Society.

    Google Scholar 

  • Rodriguez-Parada, J. M., & Percec, V. (1986). Macromolecules, 19, 55.

    Article  ADS  Google Scholar 

  • Rogers, S. S., & Mandelkern, L. (1957). The Journal of Physical Chemistry, 61, 985.

    Article  Google Scholar 

  • Rychwalski, R. W., Delin, M., & Kubát, J. (1997). Mechanics of Time Dependent Materials, 1, 161.

    Article  ADS  Google Scholar 

  • Sasabe, H., & Moynihan, C. T. (1978). Journal of Polymer Science, Polymer Physics Edition, 16, 1447.

    Article  ADS  Google Scholar 

  • Sauer, J. A., & Saba, R. G. (1969). Journal of Macromolecular Science Polymer Reviews, 3, 1217.

    Article  Google Scholar 

  • Schatzki, T. F. (1966). Journal of Polymer Science, Polymer Symposia, 14, 139.

    Article  Google Scholar 

  • Schmieder, K., & Wolf, D. (1953). Kolloid Zeitschrift, 134, 149.

    Google Scholar 

  • Schmidt, M. (2000) Ph. D. Thesis: Macroscopic Volume and Free Volume of Polymer Blends and Pressure-Densified Polymers, Department of Polymer Technology, Chalmers University of Technology, Gothenburg, Sweden.

    Google Scholar 

  • Shetter, J. A. (1963). Polymer Letters, 1, 209.

    Google Scholar 

  • Simha, R. (1977). Macromolecules, 10, 1025.

    Article  ADS  Google Scholar 

  • Simha, R., & Boyer, R. F. (1962). The Journal of Chemical Physics, 37, 1003.

    Article  ADS  Google Scholar 

  • Standt, U. D. (1983). Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, C23, 317.

    Article  Google Scholar 

  • Stein, R. S., & Hong, S. D. (1976). Journal of Macromolecular Science in Macromolecular Physics, 12, 125.

    Article  ADS  Google Scholar 

  • Struik, L. C. E. (1978). Physical aging of amorphous polymers and other materials. Amsterdam: Elsevier.

    Google Scholar 

  • Tao, S. J. (1972). The Journal of Chemical Physics, 56, 5499.

    Article  ADS  Google Scholar 

  • Tool, A. Q. (1946a). Journal of the American Ceramic Society, 29, 240.

    Article  Google Scholar 

  • Tool, A. Q. (1946b). Journal of Research of the National Bureau of Standards, 37, 73.

    Article  Google Scholar 

  • Turner Jones, A. (1964). Makromolekulare Chemie, 71, 1.

    Article  Google Scholar 

  • Ueberreiter, K., & Kanig, G. (1952). Journal of Colloid Science, 7, 569.

    Article  Google Scholar 

  • Utracki, L. A. (1985). Polymer Engineering and Science, 25, 655.

    Article  Google Scholar 

  • Utracki, L. A. (1989). Polymer alloy and blends: Thermodynamics and rheology. Munich, Vienna and New York: Hanser.

    Google Scholar 

  • Utracki, L. A., & Jukes, J. A. (1984). Journal of Vinyl Technology, 6, 85.

    Article  Google Scholar 

  • Vogel, H. (1921). Physikalishce Zeitschrift, 22, 645.

    Google Scholar 

  • Wästlund, C., & Maurer, F. H. J. (1997). Macromolecules, 30, 5870.

    Article  ADS  Google Scholar 

  • Williams, G., & Watts, D. C. (1970). Transactions of the Faraday Society, 66, 80.

    Article  Google Scholar 

  • Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). Journal of the American Chemical Society, 77, 3701.

    Article  Google Scholar 

  • Wolf, D. (1951). Kunststoffe, 41, 89.

    Google Scholar 

  • Yano, O., & Wada, Y. (1971). Journal of Polymer Science: Part A2, 9, 669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedde, U.W., Hedenqvist, M.S. (2019). The Glassy Amorphous State. In: Fundamental Polymer Science. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-29794-7_5

Download citation

Publish with us

Policies and ethics