Skip to main content

Conformations in Polymers

  • Chapter
  • First Online:
Fundamental Polymer Science

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

A polymer molecule can take great many different conformations due to the degree of freedom for torsion about the sigma bonds. A polymer molecule in solution, in the molten state, and also in the glassy, amorphous state can be categorized as a random coil. A particular state is the theta state, also referred to as the unperturbed state, which is characterized by the absence of long-range interactions. Such a molecule behaves like a ghost or a phantom. The molecules in polymer solutions at the theta temperature as well as in melts and rubbers show such conformations. Models are presented which describe the global dimensions of phantom chains. Polymer chains in crystals adopt a preferred conformation, a conformation of the lowest possible torsional energy. Proteins and polypeptides show a multitude of conformations including α-helix, β-structure, β-turns, and the complex (but regular) structure of globular proteins. Linear, crystalline polysaccharides such as cellulose and chitin show a very high Young’s modulus along the chain axis (>100 GPa), because the conformation in the crystalline state is extended, partly due to intra- and intermolecular hydrogen bonding. The conformational states of polyelectrolytes (namely polymers that contain ionic species attached to the backbone chain) are treated in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atalla, R. H., & VanderHart, D. L. (1984). Science, 223, 283.

    Article  ADS  Google Scholar 

  • Berglund, J., Angles d’Ortoli, T., Vilaplana, F., Widmalm, G., Bergenstråhle-Wohlert, M., Lawoko, M., Henriksson, G., Lindström, M., & Wohlert, J. (2016). The Plant Journal, 88, 56.

    Article  Google Scholar 

  • Boyd, R. H., & Phillips, P. J. (1993). The science of polymer molecules. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Boyd, R. H., & Smith, G. D. (2007). Polymer dynamics and relaxation. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Bungenburger de Jong, H. G., & Dekker, W. A. L. (1935). Kolloidchem. Beihefte, 43, 143.

    Article  Google Scholar 

  • Carazzolo, G. A., & Mammi, M. (1963). Journal of Polymer Science, Part A, 1, 965.

    Google Scholar 

  • Dautzenberg, H., Jaeger, W., Kötz, J., Philipp, B., Seidel, C., & Stscherbina, D. (1994). Polyelectrolytes: Formation, characterization and application. Munich, Vienna and New York: Hanser Publishers.

    Google Scholar 

  • de Gennes, P. G. (1979). Scaling concepts in polymer physics. Ithaca, NY, and London: Cornell University Press.

    Google Scholar 

  • de Gennes, P. G., Pincus, P., Velasco, R. M., & Brochard, F. (1976). Journal de Physique, 37, 1461.

    Article  Google Scholar 

  • Debye, P. J. (1946). The Journal of Chemical Physics, 14, 636.

    Article  ADS  Google Scholar 

  • Debye, P., & Hückel, E. (1923). Physikalishce Zeitschrift, 24, 185.

    Google Scholar 

  • Djahedi, C., Berglund, L. A., & Wohlert, J. (2015). Carbohydrate Polymers, 130, 175.

    Article  Google Scholar 

  • Djahedi, C., Bergenstråhle-Wohlert, M., Berglund, L. A., & Wohlert, J. (2016). Cellulose, 23, 2315.

    Article  Google Scholar 

  • Einstein, A. (1905). Annalen der Physik, 17, 549.

    Article  ADS  Google Scholar 

  • Einstein, A. (1906). Annalen der Physik, 19, 289.

    Article  ADS  Google Scholar 

  • Eisenberg, D. (2003). Proceedings of the National Academy of Sciences of the United State of Amarica, 200, 11207.

    Google Scholar 

  • Flory, P. J. (1949). The Journal of Physical Chemistry, 17, 303.

    Article  ADS  Google Scholar 

  • Flory, P. J. (1953). Principles of polymer chemistry. Ithaca, NY, and London: Cornell University Press.

    Google Scholar 

  • Flory, P. J. (1989). Statistical mechanics of chain molecules. Munich, Vienna and New York: Hanser.

    Google Scholar 

  • Frueh, J., Gai, M., Halstead, S., & He, Q. (2014). Structure and thermodynamics of polyelectrolyte complexes. Chapter 2. In P. M. Visakh, B. Oguz, & G. A. Pico (Eds.), Polyelectrolytes: Thermodynamics and rheology. Cham, Switzerland: Springer International Publishing Switzerland.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020a). Applied polymer science. Berlin and New York: Springer Nature; Chapter 3.

    Google Scholar 

  • Gedde, U. W., Hedenqvist, M. S., Hakkarainen, M., Das, O., & Nilsson, F. (2020b). Applied polymer science. Berlin and New York: Springer Nature; Chapter 5.

    Google Scholar 

  • Jones, R. G., Kahovec, J., Stepto, R., Wilks, E. S., Hess, M., Kitayama, T., & Metanomski, V. (2009). Compendium of polymer terminology and nomenclature – IUPAC recommendations 2008. Cambridge, UK: IUPAC and RSC Publishing.

    Book  Google Scholar 

  • Katchalsky, A. (1954). Journal of Polymer Science, 12, 159.

    Article  ADS  Google Scholar 

  • Kossel, A. (1896). The Journal of Chemical Physics, 22, 178.

    Google Scholar 

  • Kratky, O., & Porod, G. (1949). Recueil des Travaux Chimiques des Pays-Bas, 68, 1106.

    Article  Google Scholar 

  • Kuhn, W. (1936). Kolloid Zeitschrift, 76, 258.

    Article  Google Scholar 

  • Kuhn, W. (1939). Kolloid Zeitschrift, 87, 3.

    Article  Google Scholar 

  • Kuhn, W., & Grün, F. (1942). Kolloid Zeitschrift, 101, 248.

    Article  Google Scholar 

  • Kuhn, W., & Kuhn, H. (1946). Helvetica Chimica Acta, 29, 1095.

    Article  Google Scholar 

  • Kuhn, W., Kunzle, O., & Katchalsky, A. (1948). Helvetica Chimica Acta, 31, 1994.

    Article  Google Scholar 

  • Manning, G. S. (1967). The Journal of Physical Chemistry, 47, 2010.

    Article  ADS  Google Scholar 

  • Mark, J. E. (1976). Rubber Chemistry and Technology, 48, 495.

    Article  Google Scholar 

  • Mattice, W. L., & Suter, U. W. (1994). Conformation theory of large molecules. New York: Wiley.

    Google Scholar 

  • Michaeli, I., Overbeek, J. T. G., & Voorn, M. J. (1957). Journal of Polymer Science, 23, 443.

    Article  ADS  Google Scholar 

  • Muthukumar, M. (2017). Macromolecules, 50, 9528.

    Article  ADS  Google Scholar 

  • Nairn, J. A. (2003). Lattice 8.00™, a Macintosh application. Salt Lake City: Department of Materials Science and Engineering, University of Utah.

    Google Scholar 

  • Odijk, T. (1977). Journal of Polymer Science, Polymer Physics Edition, 15, 477.

    Article  ADS  Google Scholar 

  • Odijk, T. (1979). Macromolecules, 12, 688.

    Article  ADS  Google Scholar 

  • Patterson, G. (2007). Physical chemistry of macromolecules. Boca Raton: CRC Press, Taylor & Francis Group.

    Book  Google Scholar 

  • Porod, G. (1949). Monatshefte fuer Chemie, 80, 251.

    Article  Google Scholar 

  • Ramachandran, G. N. (1963). Journal of Molecular Biology, 7, 95.

    Article  Google Scholar 

  • Ramos, J., Vega, J. F., & Martinez-Salazar, J. (2018). European Polymer Journal, 99, 298.

    Article  Google Scholar 

  • Richardson, J. S. (1981). Advances in Protein. Chemistry, 34, 167.

    Google Scholar 

  • Rubinstein, M., & Colby, R. H. (2003). Polymer physics. Oxford: Oxford University Press.

    Google Scholar 

  • Skolnick, J., & Fixman, M. (1977). Macromolecules, 10, 944.

    Article  ADS  Google Scholar 

  • Tadokoro, H., Yasumoto, T., Murahashi, S., & Nitta, I. (1960). Journal of Polymer Science, 44, 266.

    Article  ADS  Google Scholar 

  • Tanford, C. (1961). Physical chemistry of macromolecules. New York: Wiley.

    Google Scholar 

  • Voet, D., Voet, J. G., & Pratt, C. W. (1999). Fundamentals of biochemistry. New York: Wiley.

    Google Scholar 

  • Walton, A. G., Blackwell, J., & Carr, S. H. (1973). Biopolymers. New York and London: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedde, U.W., Hedenqvist, M.S. (2019). Conformations in Polymers. In: Fundamental Polymer Science. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-29794-7_2

Download citation

Publish with us

Policies and ethics