Skip to main content

Geomechanical Characterization of Evaporitic Rocks

  • Chapter
  • First Online:
Soft Rock Mechanics and Engineering

Abstract

This chapter aims to present a summary on the main physical and geomechanical properties of evaporitic rocks (evaporites), that is, sedimentary rocks of chemical origin composed mainly of chlorides, carbonates and sulfates such as halite, gypsum, anhydrite, sylvinite, carnallite, and calcite. This text deals with the geological definition of evaporites, formation environments, relevant sedimentary structures, and the diagenesis of sediments. All these aspects directly and indirectly influence the physical indexes of the rocks (density, porosity, water content, absorption, thermal conductivity, etc.) and the strength, deformation, and time-dependent properties. Specific aspects of the index properties of the aforementioned materials and their geomechanical properties will be dealt with, emphasizing the sulphate rocks formed by gypsum and anhydrite. Finally, real cases of geotechnical problems associated with these rocks will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alejano LR, Garcia-Bastante F, Alonso E, Taboada J (1999) Back-analysis of a rockburst in a shallow gypsum room and pillar exploitation. In: Ninth international congress on rock mechanics, Paris, pp 1077–1080

    Google Scholar 

  • Al-Harthi AA (2001) Environmental impacts of the gypsum mining operation at Maqna area, Tabuk, Saudi Arabia. Environ Geol 41:209–218

    Article  Google Scholar 

  • Auvray C, Homand F, Hoxha D, Didier C (2004) Influence du temps et de l’hygrometrie sur le comportement du gypse. Rev Fr Geotech 106–107:41–51

    Article  Google Scholar 

  • Barton N (2007) Rock quality, seismic attenuation and anisotropy. Taylor and Francis Group, London, 721p

    Google Scholar 

  • Bell FG (1981) Geotechnical properties of some evaporitic rocks. Bull IAEG 24:137–144

    Google Scholar 

  • Bell FG (1994) Survey of the engineering properties of some anhydrite and gypsum from the north and midlands of England. Eng Geol 38(1–2):1–23

    Article  Google Scholar 

  • Bieniawski ZT (1964) Mechanism of brittle fracture of rock. Int J Rock Mech Min Sci 4:395–406

    Article  Google Scholar 

  • Bilgin N (1982) Cuttability of evaporites. Bull IAEG 25:85–95

    Google Scholar 

  • Boontongloan C (2000) Engineering properties of the evaporitic and clastic rocks of Maha Sarakam Formation, Sakon Nakhon evaporite basin. MS thesis, Asian Institute of Technology, Thailand

    Google Scholar 

  • Borchert H, Muir RO (1964) Salt deposits: The origin, metamorphism and deformation of evaporites. Van Nostrand Co, London, 338p

    Google Scholar 

  • Broch E, Franklin JA (1972) The point-load strength test. Int J Rock Mech Min Sci 9:669–497

    Article  Google Scholar 

  • Brune G (1965) Anhydrite and gypsum problems. Eng Geol 2(1):26–38

    Google Scholar 

  • Bullard EC, Niblett ER (1951) Terrestrial heat flow in England. Geophys J Int 6(4):222–238

    Article  Google Scholar 

  • Calcano CEF, Alzura PR (1967) Problems of dissolution of gypsum in some dam sites. In: Bull. of the Venezuelan Society of Soil Mechanics and Foundation Eng., Caracas, Venezuela, pp 1–36

    Google Scholar 

  • Carter NL, Handin J, Russell JE, Horseman ST (1993) Rheology of rocksalt. J Struct Geol 15(9/10):1257–1271

    Article  Google Scholar 

  • Cella PR (2003) Desenvolvimento e execução de ensaios triaxiais de fluência estacionária em rochas salina sob altas pressões e temperaturas. Tese (Doutoramento) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2003, 189p

    Google Scholar 

  • Chan KS (1997) A damage mechanics treatment of creep failure in rock salt. Int J Damage Mech 6:122–152

    Article  Google Scholar 

  • Clark SP (1966) Handbook of physical constants. Geological Society of America. Memoir 97, The Geological Society of America, Inc., New York, 587p

    Google Scholar 

  • Cristescu ND (1989) Rock rheology. Kluwer Academic Publishers, Dordrecht, 336p

    Book  Google Scholar 

  • Daniels JJ, Kite RJ, Scott JH (1980) Geophysical well-log measurements in three drill holes at Salt Valley, Utah. Open-file report 81-36

    Google Scholar 

  • Dean WE, Johnson KS (1989) Anhydrite deposits of the United States and characteristics of anhydrite importance for storage of radioactive waste. US Geol Survey Bull 1794

    Google Scholar 

  • Deere DU, Miller RP (1966) Engineering classification and index properties of intact rock, air force laboratory technical report no. AFNL-TR-65-116, Albuquerque, NM

    Google Scholar 

  • Devries KL, Mellegard KD, Callahan GD (2002) Salt damage criterion proof-of-concept research. Topical report, DE-FC26-00NT41026 prepared for the U.S. Department of Energy, Pennsylvania

    Google Scholar 

  • Diehl SF, Savage WZ (1989) Section 3. Physical properties of anhydrite. In: Dean WE, Johnson KS (eds) Anhydrite deposits of the United States and characteristics of anhydrite importance for storage of radioactive waste. US Geol Surv Bull 1794, pp 91–132

    Google Scholar 

  • Dusseault MB, Fordham ChJ (1993) Time-dependent behaviour of rocks. In: Hudson JA (ed) Comprehensive rock engineering: principles, practice and projects, Cap. 6, Vol 3. 119–149 Pergamon Press

    Google Scholar 

  • Dusseault MB, Rothemburg L, Mraz DZ (1987) The design of openings in saltrock using a multiple mechanism viscoplastic law. In: Proc 28th symp rock mech, ISRM, NARM, Tucson, USA, 1987

    Google Scholar 

  • Fabre D, Dayre M (1982) Properties Geotechniques de gypses et anhydrites des Alpes de Savoie (France). Bull IAEG 25:91–98

    Google Scholar 

  • Fairhurst CM, Midea NF, Eston SM, Fernandes AC, Bongiovanni LA (1991) Rock mechanics studies of proposed underground mining of potash in Sergipe, Brazil. In: Seventh ISRM congress, 2–8 Sept, Montreaux, Switzerland, pp 131–134

    Google Scholar 

  • Fuenkajorn K, Daemen JJK (1988) Boreholes closure in salt. Technical report prepared for the U.S. Nuclear Regulatory Commission, report no. NUREG/CR-5243 RW. University of Arizona

    Google Scholar 

  • Fuenkajorn K, Jandakaew M (2003) Compressed-air energy storage in salt dome at Borabu district, Thailand: geotechnical aspects. In: Proceedings of the thirty-eighth symposium on engineering geology and geotechnical engineering. University of Reno, Nevada, pp 377–391

    Google Scholar 

  • Giambastiani M (2005) Comportamiento dependente do tempo de rocas sulfaticas de anhidrita e yeso. Tese de Doutorado. Escola de Engenharia de São Carlos (EESC-USP), 431p

    Google Scholar 

  • Gignoux M, Barbier R (1955) Géologie des presas et des aménagements hydrauliques. Masson et Cie edit, 343p

    Google Scholar 

  • Goodman RE (1980) Introduction to rock mechanics. John Wiley and Sons, USA, 478p

    Google Scholar 

  • Griggs D (1939) Creep of rocks. J Geol 47:225–251

    Article  Google Scholar 

  • Grob H (1976) Swelling and heave in Swiss tunnels. Bull Intern Assoc Eng Geol 13:55–60

    Article  Google Scholar 

  • Gumusoglu MC, Ulker R (1982) The investigation of the effect of gypsum on foundation design. Bull IAEG 25:99–105

    Google Scholar 

  • Gunter BD, Parker FL (1961) The physical properties of rock salt as influenced by gamma rays: Oak Ridge Natl. Lab. Health Physics Div. Rept ORNL-302 7, 68p

    Google Scholar 

  • Gysel M (2002) Anhydrite dissolution phenomena: three cases histories of anhydrite karst causes by water tunnel operation. Rock Mech Rock Eng 35(1):1–21

    Article  Google Scholar 

  • Handin J, Hager RV Jr (1957) Experimental deformation of sedimentary rocks under confining pressure: test at room temperature on dry samples. Amer Assoc Petrol Geol Bull 41:1–50

    Google Scholar 

  • Hansen FD, Mellegard KD, Senseny PE (1984) Elasticity and strength of the natural rock. In: Proceedings of the first conference on the mechanical behavior of salt. Trans Tech Publications, Clausthal-Zellerfeld, pp 71–83

    Google Scholar 

  • Herrin, H.E.; Clark, S. P. Jr. 1956. Heat flow in west Texas and eastern New Mexico: Geophysics, 21, 4, 1087–1099

    Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown failure criterion – 2002 edition. In: Proc NARMS-TAC conference, Toronto, 2002, 1, pp 267–273

    Google Scholar 

  • Höfer KH, Menzel W (1964) Comparative study of the pillar loads in potash mines established by calculation and by measurement below ground. Int J Rock Mech Min Sci 1:181–198

    Article  Google Scholar 

  • Howart SM, Christian-Fear T (1997) Porosity, single-phase permeability and capillary pressure data from preliminary laboratory experiments on selected samples from marker bed 139 at the waste isolation pilot plant. Sandia report SAND94-0472/1. Sandia National Laboratories. vols 1–3

    Google Scholar 

  • Hume HR, Shakoor A (1981) Chapter 3 – Mechanical properties. In: Gevantman (ed) Physical properties data for rock salt. U.S. Dept of Commerce – National Bureau of standard. Monograph 167, 282p

    Google Scholar 

  • Hunsche U (1994) Uniaxial and triaxial creep and failure test on rock: experiment technique and interpretation. In: Cristecu NS (ed) Visco-plastic behavior of geomaterial. Springer-Verlag, New York

    Google Scholar 

  • Hunsche U, Hampel A (1999) Rock salt – the mechanical properties of the host rcok material for a radioactive waste repository. Eng Geol 52:271–291

    Article  Google Scholar 

  • International Association of Engineering Geology (1979) Classification of rocks and soils fore engineering geological mapping. Part 1: Rock and soil materials. Bull Int Assoc Eng Geol 19:364–371

    Article  Google Scholar 

  • Irfan TY, Özkaya I (1981) Engineering geological mapping of gypsiferous formations, Sivas, Central Eastern Turkey. Bull Int Assoc Eng Geol 24:33–37

    Article  Google Scholar 

  • James, A.N.; Lupton, A.R.R. 1978. Gypsum and anhydrite in foundations of hydraulic structures. Geotechnique, 28, no3, 249–272

    Google Scholar 

  • Karacan E, Yilmaz I (2000) Geotechnical evaluation of Miocene gypsum from Sivas (Turkey). Geotech Geol Eng 18:79–90

    Article  Google Scholar 

  • Kenzakoo T (2006) Relationship between mineralogy and engineering properties of rock salt. MSci thesis, Suranaree University of Technology, 172p

    Google Scholar 

  • Kolano M, Flisiak D (2013) Comparison of geo-mechanical properties of white rock salt and pink rock salt in Kłodawa salt diaper. Stud Geotech Mech 35(1):119–127

    Article  Google Scholar 

  • Krause H (1976) Sulphate rocks in Baden-Wurttenberg and their importance to civil engineering. Bull IAEG 13:45–49

    Google Scholar 

  • Langer M (1981) The rheological behaviour of rock salt. In: Proceed. int. workshop on salt mechanics, Pennsylvania State University, Nov 1981, Aachen, Germany

    Google Scholar 

  • Lindner EN, Brady BHG (1981) Memory aspects of salt creep. In: Proceedings of the first conference on the mechanics behavior of salt. Trans Tech Publications, Clausthal-Zellerfeld, pp 241–273

    Google Scholar 

  • Lori A, Frosio G (1962) Treinta años de servicio de la galeria de desviación (Central Hidroelécrica “Idro-Vobarno”, que atravieza una formación de anhidrita. I Coloquio Internacional sobre las obras públicas en los terrenos yesiferos. Tema 2°, Comunicación C 2–11, Madrid (España), pp 239–265

    Google Scholar 

  • Madsen FT, Nüesch R (1991) The swelling behaviour of clay sulfate rocks. 7o Internat. Congress of rock mechanics, Aechen, Germany, 1, vol 285–288

    Google Scholar 

  • Martin CD, Chandler NA (1994) The progressive fracture of lac du bonnet granite. Int J Rock Mech Min Sci 31(6):643–659

    Article  Google Scholar 

  • Maury V (1993) An review of tunnel, underground excavation and boreholes collapse mechanism. In: Hudson (ed) Comprehensive rock engineering: principles, practice and projects, cap. 14, vol 4, pp 369–411

    Google Scholar 

  • Mavko G (2017) Stanford Rock Physics Laboratory https://pangea.stanford.edu/courses/gp262/Notes/8.SeismicVelocity.pdf

  • Misra AK (1962) An investigation of the time-dependent deformation or “creep” in rocks. PhD thesis, Sheffield University

    Google Scholar 

  • Müller WH, Briegel U (1978) The rheological behaviour of polycristaline anhydrite. Eclogae Geol Helv 71(2):397–407

    Google Scholar 

  • Müller P, Siemes H (1974) Strength, ductility and preferred orientation of anhydrite under mantle pressure up to 5 kilobars at temperatures up to 300 °C. Tectonophysics 23(1–2):105–127

    Article  Google Scholar 

  • Munson DE, Wawersik WR (1993) Constitutive modeling of salt behavior – state of the technolog. In: Proceedings of the seventh international congress of the rock mechanics, vol 3. A.A. Balkema, Netherlands, pp 1797–1810

    Google Scholar 

  • Nüesch R, Madsen FT, Steiner W (1995) Long time swelling of anhydritic rocks: mineralogical and microstructural evaluation. In: Eighth internat. congress of rock mechanics, Tokyo, pp 133–138

    Google Scholar 

  • Oldecop L, Alonso E (2012) Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate. Int J Rock Mech Min Sci 54:90–102

    Article  Google Scholar 

  • Ordoñez S, Soriano A, Garcia Del Cura MA, Esteban F (1990) Swelling mechanism of tertiary anhydritic-dolomitic shales, 6o Congr intern IAEG, pp 1963–1971

    Google Scholar 

  • Orti Cabo F (2010) Evaporitas: introducción a la sedimentología evaporítica. In: Arche A (ed) Sedimentología del proceso físico a la cuenca sedimentaria. Textos Universitarios 46. Consejo Superior de Investigaciones Científicas, Madrid, 2010, 1287pp

    Google Scholar 

  • Papadopoulos Z, Kolaiti E, Mourtzas N (1994) The effect of crystal size on geotechnical properties of Neogene gypsum in Crete. Q J Eng Geol 27:267–273

    Article  Google Scholar 

  • Passchier C, Trouw R (1998) Microtectonics. Springer, New York, 289p

    Book  Google Scholar 

  • Pehovaz Alvarez I (2009) Estudo de mecanismos de deformação lenta da gipsita bandada da Chapada de Araripe em ensaios de fluência monitorados por emissão acústica. Tese de Doutorado –Escola de Engenharia de São Carlos – EESC-USP, 356p

    Google Scholar 

  • Pfeifle TW, Hansen FD (1998) Database of mechanical and hydrological properties of WIPP anhydrite derived from laboratory-scale experiments. Contractor report SAND98-1714. Sandia National Laboratories

    Google Scholar 

  • Pfeifle TW, Senseny PE (1982) Steady-state creep of rock salt in geoenginnering. In: Proceedings of 23rd symposium on rock mechanics, Berkeley, 25–27 Aug 1982. AIME, New York, pp 333–340

    Google Scholar 

  • Phueakphum D (2003) Compressed-air energy storage in rock salt of the Maha Sarakham Formation. MS thesis, Suranaree University of Technology, Thailand

    Google Scholar 

  • Plookphol T (1987) Engineering properties of the evaporite in the Khorat Plateau. MS thesis, Asian Institute of Technology, Thailand

    Google Scholar 

  • Prucha JJ (1968) Salt deformation and decollement in the Firtree point anticline of Central New York. Tectonophysics 6(4):273–299

    Article  Google Scholar 

  • Rahn PH, Davis AD (1996) Gypsum foundation problems in the Black Hills area, South Dakota. Environ Eng Geosci 2:213–223

    Article  Google Scholar 

  • Richards TC (1933) On elastic constants of rock with seismic application. Proc Phys Soc 45(246):70–81

    Article  Google Scholar 

  • Robertson EC (1962) Physical properties of evaporitic minerals. USGS report TEI 821, 90p

    Google Scholar 

  • Robertson EC, Robie RA, Books KG (1958) Physical properties of salt, anhydrite and Gypsum: Preliminary Report. United States Department of the Interior Geological Survey, Trace Elements Memorandum Report 1048

    Google Scholar 

  • Rybach L (1975) Thermal problems in the storage of radioactive wastes in anhydrite. Ver Schweiz Petrol Geol Ing Bull 41:100, 1–100,13

    Google Scholar 

  • Sahores J (1962) Contribution a l’etude des phenomenes mécaniques accompagnant l’hidratation de l’ánhidrite. Thése University Toulouse, Ver. Materiaux de Construction Pub. Tec. 126

    Google Scholar 

  • Schwerdtner WM, Tou JC, Hertz PB (1965) Elastic properties of single crystals of anhydrite. Can J Earth Sci 2(6):673–683

    Article  Google Scholar 

  • Serata S, Gloyna EF (1959) Development of design principle for disposal of reactor fuel waste into underground salt cavities: Univ. of Texas, Civil Eng. Dept., Tech. Rept. Contract AT (11·1)-490, 173p

    Google Scholar 

  • Spalletti LA (2017) Evaporitas. Apuntes de Catedra. Catedra de Sedimentologia, Facultad de Ciencias Naturales y Museo – Universidad Nacional de la Plata (Argentina). http://www.fcnym.unlp.edu.ar/catedras/sedimentologia/pdf/evaporitas.pdf

  • Sriapai T, Walsri C, Fuenkajorn K (2012) Effect of temperature on compressive and tensile strengths of salt. ScienceAsia 38:166–174

    Article  Google Scholar 

  • Steiner W (1993) Swelling rocks in tunnels: rock characterization, effect of horizontal stresses and construction procedures. Int J Rock Mech Min Sci Geomech Abstr 30(4):361–380

    Article  Google Scholar 

  • Stowe RL (1985) Creep test of WIPP (Waste Isolation Pilot Plant) site anhydrite core. Final report. United States

    Google Scholar 

  • Tixier MP, Alger RP (1970) Log evaluation of nonmetallic mineral deposits. Geophysics 35(1):124–142

    Google Scholar 

  • Truesdell C, Noll W (1965) The non-linear field theories of mechanics. Handbuch der Physic, III/3. Springer-Verlag, Berlin

    Google Scholar 

  • Urai JL, Schléder Z, Spiers CJ, Kukla PA (2008) Flow and transport properties of salt rocks. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. Springer, New York

    Google Scholar 

  • Vutukuri VS, Lama RD (1978) Handbook on mechanical properties of rocks, vol 1–3. Trans Tech Pub, 406p

    Google Scholar 

  • Wawersik WR (1985) Determination of steady State Creep rates and activation parameters for rock salt. In: Pincus HJ, Hoskins ER (eds) Measurements of rock properties at elevated pressures and temperatures. ASTM STP 869. American Society for Testing and Materials, USA, pp 72–92

    Chapter  Google Scholar 

  • Wetchasat K (2002) Assessment of mechanical performance of rock salt formations for nuclear waste repository in northeastern Thailand. MS thesis, School of Geotechnology, Suranaree University of Technology, Thailand

    Google Scholar 

  • Wheildon J, Evans TR, Girden RW (1974) Thermal conductivity, density and sonic velocity measurements of samples of anhydrite and halite from sites 225 and 227. In: Initial reports of the deep sea drilling projects, vol 23. US Government Printing Office, Washington, pp 909–911

    Google Scholar 

  • Yan F, Han D-h, Yao Q, Li H (2014) Seismic velocities of halite salt: anisotropy, dispersion, temperature and stress effects. In: SEG Denver 2014 annual meeting, pp 2783–2787

    Google Scholar 

  • Yang CH, Daemen JJK, Yin J-H (1999) Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci 36:233–242

    Article  Google Scholar 

  • Yilmaz I, Sendir H (2002) Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in Gypsum from Sivas (Turkey). Eng Geol 66:211–219

    Article  Google Scholar 

  • Zanbak C, Arthur RC (1986) Geochemical and engineering aspects of anhydrite/gypsum phase transitions. Bull Assoc Eng Geol 23(4):419–433

    Google Scholar 

  • Zierfuss H (1969) Heat conductivity of some carbonate rocks and clayed sandstones. Am Assoc Pet Geol Bull 53(2):251–260

    Google Scholar 

  • Zong J, Stewart RS, Dyaur N, Myers MT (2017) Lab measurements and Gulf of Mexico well log analysis. Geophysics 82(5):1–80

    Google Scholar 

Download references

Acknowledgments

We thank Chairman Prof. Milton Kanji and the vice-chairman Prof, He Manchao for the invitation to make a contribution in this book, and Dr. Paulo Cella for providing a copy of his PhD thesis on salt rocks from Brazil. I would like to thank the anonymous referees for their suggestions, which have led to significant revisions and improvements.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giambastiani, M. (2020). Geomechanical Characterization of Evaporitic Rocks. In: Kanji, M., He, M., Ribeiro e Sousa, L. (eds) Soft Rock Mechanics and Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-29477-9_6

Download citation

Publish with us

Policies and ethics