Skip to main content

Weathering, Erosion, and Susceptibility to Weathering

  • Chapter
  • First Online:
Soft Rock Mechanics and Engineering

Abstract

Soft grounds are often the result of weathering. Weathering is the chemical and physical change in time of ground under influence of atmosphere, hydrosphere, cryosphere, biosphere, and nuclear radiation (temperature, rain, circulating groundwater, vegetation, etc.). Erosion is the removal of material on or below the Earth surface due to flowing (ground) water, ice, and wind. Quantities of weathered material do not need to be large to change the geotechnical properties of a groundmass, for example, weathering of discontinuity walls that reduce the shear strength. Weathering is the reason for disasters in many constructions and other engineering applications in which ground is used. The processes involved in weathering are described briefly as well as the role of erosion in weathering and weathering depth. The dependence of weathering on lithology, implications for engineering applications, the methodology for describing and classification of weathering, and options for determining the susceptibility to weathering for forecasting future weathering are introduced. Hard layer or crust forming as result of weathering and tests for determining the state of weathering and susceptibility to weathering conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that caprock has multiple meanings: a caprock in geomorphology is a mostly stronger layer that is more resistant to weathering and erosion overlying weaker and less resistant layers. Caprock may be used also for impermeable layers overlying a salt body protecting the salt from solution by rain and groundwater, and in the petroleum industry caprock in used for an impermeable layer capping an oil or gas reservoir.

References

  • Ahnert F (1994) Equilibrium, scale and inheritance in geomorphology. Geomorphology 11(2):125–140

    Article  Google Scholar 

  • Allison RJ, Bristow GE (1999) The effects of fire on rock weathering: some further considerations of laboratory experimental simulation. Earth Surf Process Landf 24(8):707–713

    Article  Google Scholar 

  • Alonso-Zarza AM, Wright VP (2010) Calcretes. In: Alonso-Zarza AM, Tanner LH (eds) Carbonates in continental settings; facies, environments, and processes, vol 61, 1st edn. Elsevier, Amsterdam, pp 225–267

    Chapter  Google Scholar 

  • Anderson RS, Anderson SP (2010) Geomorphology: the mechanics and chemistry of landscapes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Anon (1995) The description and classificatioin of weathered rocks for engineering purposes. Q J Eng Geol Hydrogeol 28(3):207–242

    Article  Google Scholar 

  • ASTM C131/C131M-14 (2014) Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM D2845-08 (2008) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock (Withdrawn 2017). ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM D4644-16 (2016) Standard test method for slake durability of shales and other similar weak rocks. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM D5240/D5240M-12e1 (2013) Standard test method for evaluation of durability of rock for erosion control using sodium sulfate or magnesium sulfate. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM D5312/D5312M-12 (2013) Standard test method for evaluation of durability of rock for erosion control under freezing and thawing conditions. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM D5313/D5313M-12 (2013) Standard test method for evaluation of durability of rock for erosion control under wetting and drying conditions. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM D5744-18 (2018) Standard test method for laboratory weathering of solid materials using a humidity cell. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Barros De Oliveira Frascá MH, Yamamoto JK (2006) Ageing tests for dimension stone - experimental studies of granitic rocks from Brazil; Paper no. 224. In: Culshaw MG, Reeves HJ, Jefferson I, Spink TW (eds) 10th International Congress of the International Association for Engineering Geology and the Environment IAEG; Engineering geology for tomorrow’s cities, Nottingham, UK, 6–10 Sept 2006. Geological Society of London, London, p 9

    Google Scholar 

  • Begonha A, Sequeira Braga MA (2002) Weathering of the Oporto granite: geotechnical and physical properties. Catena 49(1–2):57–76

    Article  Google Scholar 

  • BGS Arsenic (2001) Arsenic contamination of groundwater in Bangladesh: Final report (BGS Technical Report WC/00/19), vol 2. BGS, Keyworth, UK

    Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley, New York

    Google Scholar 

  • Bland W, Rolls D (1998) Weathering: an introduction to the scientific principles. Arnold Publishers, London

    Google Scholar 

  • Blight GE (1989) Design assessment of saprolites and laterites; Invited lecture; General report/Discussion session 6. In: Publications Committee of the XII ICSMFE (ed) 12th International Conference on soil mechanics and foundation engineering, Rio de Janiero, 13–18 Aug 1989. Balkema, Rotterdam, pp 2477–2484

    Google Scholar 

  • Bracke G, Salah S, Gauthier-Lafaye F (2001) Weathering process at the natural fission reactor of Bangombé. Environ Geol 40(4):403–408

    Article  Google Scholar 

  • Brattli B, Broch E (1995) Stability problems in water tunnels caused by expandable minerals. Swelling pressure measurements and mineralogical analysis. Eng Geol 39(3–4):151–169

    Article  Google Scholar 

  • BS 5930:1999 (1999) Code of practice for site investigations. British Standards Institution, London

    Google Scholar 

  • BS EN 12370:1999 (1999) Natural stone test methods - determination of resistance to salt crystallisation. British Standards Institution, London

    Google Scholar 

  • Cabria XA (2015) Effects of weathering in the rock and rock mass properties and the influence of salts in the coastal roadcuts in Saint Vincent and Dominica. University of Twente, Enschede, Netherlands

    Google Scholar 

  • Caves Han-sur-Lesse (2018) Caves of Han-sur-Lesse. http://www.grotte-de-han.be/en/the-cave-of-han. Accessed 24 Mar 2018

  • Chawre B (2018) Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist. J Rock Mech Geotech Eng 10(3):594–602

    Article  Google Scholar 

  • Chesworth WE (2008) Encyclopedia of soil science, Encyclopedia of earth sciences series, 2nd edn. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • CIRIA (2007) The rock manual. The use of rock in hydraulic engineering, 2nd edn. CIRIA; CUR; CETMEF, C683, London

    Google Scholar 

  • Colman SM (1981) Rock-weathering rates as functions of time. Quat Res 15(3):250–264

    Article  Google Scholar 

  • Cummings RA, Kendorski FS, Bieniawski ZT (1984) Caving rock mass classification and support estimation. Engineers International Inc., Chicago

    Google Scholar 

  • Da Conceição FT, Dos Santos CM, De Souza Sardinha D, Navarro GRB, Godoy LH (2015) Chemical weathering rate, denudation rate, and atmospheric and soil CO2 consumption of Paraná flood basalts in São Paulo State, Brazil. Geomorphology 233:41–51

    Article  Google Scholar 

  • Dearman WR (1995) Description and classification of weathered rocks for engineering purposes: the background to the BS5930:1981 proposals. Q J Eng Geol Hydrogeol 28(3):267–276

    Article  Google Scholar 

  • Dethier DP, Lazarus ED (2006) Geomorphic inferences from regolith thickness, chemical denudation and CRN erosion rates near the glacial limit, Boulder Creek catchment and vicinity, Colorado. Geomorphology 75(3):384–399

    Article  Google Scholar 

  • Dick JC, Shakoor A (1995) Characterizing durability of mudrocks for slope stability purposes. In: Haneberg WC, Anderson SA (eds) Clay and shale slope instability; reviews in engineering geology, vol 10. The Geological Society of America, Boulder, CO, pp 121–130

    Chapter  Google Scholar 

  • Didier C, Van der Merwe N, Betournay M, Mainz M, Kotyrba A, Aydan Ö, Josien J-P, Song W-K (2008) Mine closure and post-mining management; International state-of-the-art (ISRM) ISfRM

    Google Scholar 

  • Doehne E, Price CA (2010) Stone conservation: an overview of current research, 2nd edn. Getty Conservation Institute, Los Angeles, CA

    Google Scholar 

  • Dosseto A, Buss HL, Suresh PO (2012) Rapid regolith formation over volcanic bedrock and implications for landscape evolution. Earth Planet Sci Lett 337–338:47–55

    Article  Google Scholar 

  • Ehlen J (1999) Fracture characteristics in weathered granites. Geomorphology 31(1–4):29–45

    Article  Google Scholar 

  • Ehlen J (2002) Some effects of weathering on joints in granitic rocks. Catena 49(1–2):91–109

    Article  Google Scholar 

  • Feddema JJ, Meierding TC (1987) Marble weathering and air pollution in Philadelphia. Atmos Environ 21(1):143–157

    Article  Google Scholar 

  • Fookes PG (1997) Tropical residual soils; A Geological Society Engineering Group Working Party revised report. Geological Society; Professional handbooks. The Geological Society, London

    Google Scholar 

  • Fookes PG, Gourley CS, Ohikere C (1988) Rock weathering in engineering time. Q J Eng Geol Hydrogeol 21:33–57

    Article  Google Scholar 

  • Franklin JA, Chandra R (1972) The slake-durability test. Int J Rock Mech Min Sci Geomech Abstr 9(3):325–328

    Article  Google Scholar 

  • Gambolati G, Putti M, Teatini P, Camporese M, Ferraris S, Stori GG, Nicoletti V, Silvestri S, Rizzetto F, Tosi L (2005) Peat land oxidation enhances subsidence in the Venice watershed. EOS Trans Am Geophys Union 86(23):217–220

    Article  Google Scholar 

  • GCO (1990) Foundation properties of marble and other rocks in the Yuen Long-Tuen Mun Area, vol 2/90, Hong Kong

    Google Scholar 

  • Ghosh NC, Singh RD (2009) Groundwater arsenic contamination in India: vulnerability and scope for remedy. In: 5th Asian Regional Conference of INCID, Special session on groundwater, New Delhi, India, 9–11 Dec 2009. Indian National Committee on Irrigation and Drainage (INCID); International Commission on Irrigation and Drainage (ICID), New Delhi, p 24

    Google Scholar 

  • Hachinohe S, Hiraki N, Suzuki T (2000) Rates of weathering and temporal changes in strength of bedrock of marine terraces in Boso Peninsula, Japan. Eng Geol 55(1–2):29–43

    Article  Google Scholar 

  • Hack HRGK (1996) Slope stability probability classification (SSPC). ITC/Technical University, Delft

    Google Scholar 

  • Hack HRGK (1998) Slope stability probability classification; SSPC; 2nd version. University of Technology Delft; International Institute for Aerospace Survey and Earth Sciences; ITC, Delft, Enschede

    Google Scholar 

  • Hack HRGK, Huisman M (2002) Estimating the intact rock strength of a rock mass by simple means. In: Van Rooy JL, Jermy CA (eds) 9th Congress of the International Association for Engineering Geology and the Environment (IAEG); Engineering geology for developing countries, Durban, South Africa, 16–20 Sept 2002. IAEG & South African Institute for Engineering and Environmental Geologists (SAIEG), Houghton, South Africa, pp 1971–1977

    Google Scholar 

  • Hack HRGK, Price DG (1997) Quantification of weathering. In: Marinos PG, Koukis GC, Tsiambaos GC, Stournaras GC (eds) Proceedings engineering geology and the environment, Athens, 23–27 Jun 1997. Balkema, Taylor & Francis Group, Rotterdam, pp 145–150

    Google Scholar 

  • Hack HRGK, Price DG, Rengers N (2003) A new approach to rock slope stability - a probability classification (SSPC). Bull Eng Geol Environ 62(2):167–184

    Article  Google Scholar 

  • Harris CS, Hart MB, Varley PM, Warren CD (1996) Engineering geology of the channel tunnel. Thomas Telford Ltd, London

    Book  Google Scholar 

  • Hencher SR (2015) Practical rock mechanics. CRC, Taylor & Francis Group, Boca Raton, FL

    Book  Google Scholar 

  • Hoek E, Brown ET (2018) The Hoek-Brown failure criterion and GSI – 2018 edition. J Rock Mech Geotech Eng 11:445–463

    Article  Google Scholar 

  • Hughes M, Bonapace P, Rigbey S, Charalambu H (2007) An innovative approach to tunneling in the swelling Queenston Formation of Southern Ontario. In: Traylor MT, Townsend JW (eds) Rapid excavation and tunneling conference; RETC 2007, Toronto, Canada, 10–13 Jun 2007. Society of Mining, Metallurgy and Exploration (SME), Littleton, CO, pp 901–912

    Google Scholar 

  • Huisman M (2006) Assessment of rock mass decay in artificial slopes. University Delft; ITC, Delft; Enschede

    Google Scholar 

  • Huisman M, Hack HRGK, Nieuwenhuis JD (2006) Predicting rock mass decay in engineering lifetimes: the influence of slope aspect and climate. Environ Eng Geosci 12(1):39–51

    Article  Google Scholar 

  • Huisman M, Nieuwenhuis JD, Hack HRGK (2011) Numerical modelling of combined erosion and weathering of slopes in weak rock. Earth Surf Process Landf 36(13):1705–1714

    Article  Google Scholar 

  • ISO 14689-1:2017 (2017) Geotechnical investigation and testing; Identification, description and classification of rock. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • James P, Chester D, Duncan A (2000) Volcanic soils: their nature and significance for archaeology. In: McGuire WJ, Griffiths DR, Hancock PL, Stewart IS (eds) The archaeology of geological catastrophes, vol 172. Geological Society of London, London, pp 317–338

    Google Scholar 

  • Katongo C (2005) Ground conditions and support systems at 1 shaft, Konkola mine, Chililabombwe, Zambia. In: The Third Southern African Conference on Base Metals: Southern Africa’s response to changing global base metals market dynamics, Kitwe, Zambia, 26–29 Jun 2005. The South African Institute of Mining and Metallurgy, Johannesburg, pp 253–280

    Google Scholar 

  • Khalifa MA, Kumon F, Yoshida K (2009) Calcareous duricrust, Al Qasim Province, Saudi Arabia: occurrence and origin. Quat Int 209(1–2):163–174

    Article  Google Scholar 

  • Knight J, Grab SW (2014) Lightning as a geomorphic agent on mountain summits: evidence from southern Africa. Geomorphology 204:61–70

    Article  Google Scholar 

  • Kottek M, Rubel F (2017) World maps of Köppen-Geiger climate classification; version March 2017. Veterinärmedizinische Universität Wien; Climate Change & Infectious Diseases. http://koeppen-geiger.vu-wien.ac.at/present.htm. Accessed 10 Jan 2019

  • Krajick K (2005) Fire in the hole; Raging in mines from Pennsylvania to China, coal fires threaten towns, poison air and water, and add to global warming. Smithsonian Magazine May (25 April 2019)

    Google Scholar 

  • Krank KD (1980) The effects of weathering on the engineering properties of Sierra Nevada granodiorites. University of Nevada, Reeno

    Google Scholar 

  • Kuenzer C, Stracher GB (2012) Geomorphology of coal seam fires. Geomorphology 138(1):209–222

    Article  Google Scholar 

  • Lagasse PF, Clopper PE, Zevenbergen LW, Ruff JF (2006) Riprap design criteria, recommended specifications, and quality control; Report 568. NCHRP, Washington, DC

    Google Scholar 

  • Lainé M, Balan E, Allard T, Paineau E, Jeunesse P, Mostafavi M, Robert JL, Le Caër S (2017) Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay mineral. RSC Adv 7(1):526–534

    Article  Google Scholar 

  • Lamp JL, Marchant DR, Mackay SL, Head JW (2017) Thermal stress weathering and the spalling of Antarctic rocks. J Geophys Res Earth 122(1):3–24

    Article  Google Scholar 

  • Laubscher DH, Jakubec J (2001) The MRMR rock mass classification for jointed rock masses. In: Hustrulid WA, Bullock RL (eds) Underground mining methods: engineering fundamentals and international case studies. Society for Mining, Metallurgy & Exploration, Inc. (SME), Littleton, CO, pp 475–481

    Google Scholar 

  • Lebedeva MI, Fletcher RC, Brantley SL (2010) A mathematical model for steady-state regolith production at constant erosion rate. Earth Surf Process Landf 35(5):508–524

    Google Scholar 

  • Lim SS, Martin CD (2010) Core disking and its relationship with stress magnitude for Lac du Bonnet granite. Int J Rock Mech Min Sci 47(2):254–264

    Article  Google Scholar 

  • Lumb P (1983) Engineering properties of fresh and decomposed igneous rocks from Hong Kong. Eng Geol 19(2):81–94

    Article  Google Scholar 

  • Lumpkin GR, Gao Y, Gieré R, Williams CT, Mariano AN, Geisler T (2014) The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineral Mag 78(5):1071–1095

    Article  Google Scholar 

  • Machado SL, Vilar OM, Carvalho MF (2008) Constitutive model for long term municipal solid waste mechanical behavior. Comput Geotech 35(5):775–790

    Article  Google Scholar 

  • Marques EAG, Barroso EV, Menezes Filho AP, Vargas Jr EA (2010) Weathering zones on metamorphic rocks from Rio de Janeiro—physical, mineralogical and geomechanical characterization. Eng Geol 111(1–4):1–18

    Article  Google Scholar 

  • Massey JB, Irfan TY, Cipullo A (1989) The characterization of granitic saprolitic soils. In: Publications Committee of the XII ICSMFE (ed) Proceedings of the 12th International Conference on soil mechanics and foundation engineering, Rio de Janeiro, Brasil, 13–18 Aug 1989. International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE); A.A. Balkema, Rotterdam, pp 533–542

    Google Scholar 

  • Matsukura Y, Hirose T (2000) Five year measurements of rock tablet weathering on a forested hillslope in a humid temperate region. Eng Geol 55(1):69–76

    Article  Google Scholar 

  • Meierding TC (1993) Marble tombstone weathering and air pollution in North America. Ann Assoc Am Geogr 83(4):568–588

    Article  Google Scholar 

  • Meshik AP (2009) The workings of an ancient nuclear reactor. Scientific American January (19 April 2019)

    Google Scholar 

  • Miščević P, Vlastelica G (2014) Impact of weathering on slope stability in soft rock mass. J Rock Mech Geotech Eng 6(3):240–250

    Article  Google Scholar 

  • Morgan N (2016) Gravestone geology. Geol Today 32(4):154–159

    Article  Google Scholar 

  • Mottershead DN (1989) Rates and patterns of bedrock denudation by coastal salt spray weathering: a seven-year record. Earth Surf Process Landf 14(5):383–398

    Article  Google Scholar 

  • Nicholson DT (2000) Deterioration of excavated rockslopes: mechanisms, morphology and assessment. University of Leeds, Leeds, UK

    Google Scholar 

  • Nickmann M, Spaun G, Thuro K (2006) Engineering geological classification of weak rocks; Paper no. 492. In: Culshaw MG, Reeves HJ, Jefferson I, Spink TW (eds) 10th International Congress of the International Association for Engineering Geology and the Environment IAEG; Engineering geology for tomorrow’s cities, Nottingham, UK, 6–10 Sept 2006. Geological Society of London, London, p 9

    Google Scholar 

  • Nóbile JC, Martini MA, Dávila FM (2017) Cosmogenic 10Be denudation rates and geomorphometric analysis in the Ambato range (28°–29°S), Sierras Pampeanas, Argentina. Quat Int 438:80–91

    Article  Google Scholar 

  • Ohta T (2001) Core disking and “rockburst” in soft tuffaceous rock masses at Iwate tunnel. Q Rep RTRI 42(3):130–135

    Article  Google Scholar 

  • Olesen O, Dehls JF, Ebbing J, Henriksen H, Kihle O, Lundin E (2007) Aeromagnetic mapping of deep-weathered fracture zones in the Oslo Region – a new tool for improved planning of tunnels. Nor J Geol 87(1/2):253–267

    Google Scholar 

  • Oyama T, Chigira M (2000) Weathering rate of mudstone and tuff on old unlined tunnel walls. Eng Geol 55(1–2):15–27

    Article  Google Scholar 

  • Pesendorfer M, Loew S (2004) Hydrogeologic exploration during excavation of the Lötschberg base tunnel (AlpTransit Switzerland). In: Hack HRGK, Azzam R, Charlier R (eds) Engineering geology for infrastructure planning in Europe; a European perspective, Lecture notes in earth sciences, vol 104. Springer, Berlin, pp 347–358

    Chapter  Google Scholar 

  • Pickles A (2005) Rock mass classification for pile foundations. In: The characterization of rock masses for engineering purposes, City University, Hong Kong, 25 Jun 2005. The Geological Society, Hong Kong Regional Group, Hong Kong, p 36 slides

    Google Scholar 

  • Pieters CM, Noble SK (2016) Space weathering on airless bodies. J Geophys Res Planets 121(10):1865–1884

    Article  Google Scholar 

  • Price DG (1995) A suggested method for the classification of rock mass weathering by a ratings system. Q J Eng Geol Hydrogeol 26(1):69–76

    Article  Google Scholar 

  • Price DG (2000) Dolerite once exposed at Stirling Castle, Scotland (personal communication), Delft

    Google Scholar 

  • Price DG, De Freitas MH, Hack HRGK, Higginbottom IE, Knill JL, Maurenbrecher M (2009) Engineering geology; principles and practice. Springer, Berlin

    Google Scholar 

  • Qi S, Yue ZQ, Wu F, Chang Z (2009) Deep weathering of a group of thick argillaceous limestone rocks near Three Gorges Reservoir, Central China. Int J Rock Mech Min Sci 46(5):929–939

    Article  Google Scholar 

  • Rahaman W, Wittmann H, von Blanckenburg F (2017) Denudation rates and the degree of chemical weathering in the Ganga River basin from ratios of meteoric cosmogenic 10Be to stable 9Be. Earth Planet Sci Lett 469:156–169

    Article  Google Scholar 

  • Rainey TP, Rosenbaum MS (1989) The adverse influence of geology and groundwater on the behaviour of London Underground railway tunnels near Old Street Station. Proc Geol Assoc 100(1):123–134

    Article  Google Scholar 

  • Reißmüller M (1997) Rottachtales zwischen Bodenschneid, Stolzenbert und Siebligrat sowie Geotechnische Eigenschaften verwitterter Kössener Mergel. Diploma thesis, Technical University of Munich, Munich, Germany. p 128

    Google Scholar 

  • Rocscience (2011) Disturbance factor; rock mass strength analysis using the generalized Hoek-Brown failure criterion. Rocscience Inc. http://www.rocscience.com. Accessed 14 Oct 2013

  • Rodriguez-Navarro C, Doehne E, Sebastian E (1999) Origins of honeycomb weathering: the role of salts and wind. GSA Bull 111(8):1250–1255

    Article  Google Scholar 

  • Ruiz-Agudo E, Putnis CV, Rodríguez-Navarro YC (2007) Role of chemical weathering in salt decay of ornamental stone. In: Proc. MACLA 7, XXVII Reunión De La Sociedad Española De Mineralogía, Jaén, Spain, 11–14 Sept 2007, p 29

    Google Scholar 

  • Ruxton BP (1968) Measures of the degree of chemical weathering of rocks. J Geol 76(5):518–527

    Article  Google Scholar 

  • Schmitz R, Schroeder C (2009) Urban site investigation in the Belgian karst belt; Paper 801. In: Culshaw MG, Reeves HJ, Jefferson I, Spink TW (eds) 10th International congress International Association of Engineering Geology and The Environment (IAEG2006); Engineering geology for tomorrow’s cities, Nottingham, UK, 6–10 Sept 2006. Geological Society of London, London, p 10

    Google Scholar 

  • Schoonejans J, Vanacker V, Opfergelt S, Ameijeiras-Mariño Y, Christl M (2016) Kinetically limited weathering at low denudation rates in semiarid climatic conditions. J Geophys Res Earth 121(2):336–350

    Article  Google Scholar 

  • Selby MJ (1980) A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Z Geomorphol 24(1):31–51

    Google Scholar 

  • Selby MJ (1993) Hillslope materials and processes, 2nd edn. Oxford University Press, Oxford, UK

    Google Scholar 

  • Shao Y, Raupach MR, Findlater PA (1993) Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res Atmos 98(D7):12719–12726

    Article  Google Scholar 

  • Sim CK, Kim SS, Lucey PG, Garrick-Bethell I, Choi Y-J (2017) Asymmetric space weathering on lunar crater walls. Geophys Res Lett 44(22):11273–211281

    Article  Google Scholar 

  • Singh A (2004) FRHI-a system to evaluate and mitigate rock fall hazard in stable rock excavations. J Inst Eng India 85:62–75

    Google Scholar 

  • Singh H, Huat BBK (2004) Origin, formation and occurrence of tropical residual soils. In: Huat BBK, Gue SS, Ali FH (eds) Tropical residual soils engineering, 1st edn. CRC Press, London, pp 1–34

    Google Scholar 

  • Singh VP, Singh P, Haritashya UK (2011) Encyclopedia of snow, ice and glaciers. Springer Netherlands, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Snee C (2008) Engineering geology and cavern design for New York City. In: Roach MF, Kritzer MR, Ofiara D, Townsend BF (eds) 9th North American Tunnelling, NAT 2008, San Francisco, 8–11 Jun 2008. Society for Mining, Metallurgy & Exploration, Littleton, CO, pp 364–372

    Google Scholar 

  • Soppe WJ, Prij J (1994) Radiation damage in a rock salt nuclear waste repository. Nucl Technol 107(3):243–253

    Article  Google Scholar 

  • Stacey TR (1982) Contribution to the mechanism of core discing. J South Afr Inst Min Metall 82(9):269–274

    Google Scholar 

  • Tating FF, Hack HRGK, Jetten VG (2013) Engineering aspects and time effects of rapid deterioration of sandstone in the tropical environment of Sabah, Malaysia. Eng Geol 159:20–30

    Article  Google Scholar 

  • Tating FF, Hack HRGK, Jetten VG (2015) Weathering effects on discontinuity properties in sandstone in a tropical environment: case study at Kota Kinabalu, Sabah Malaysia. Bull Eng Geol Environ 74(2):427–441

    Article  Google Scholar 

  • Tating FF, Hack HRGK, Jetten VG (2019) Influence of weathering-induced iron precipitation on properties of sandstone in a tropical environment. Q J Eng Geol Hydrogeol 52(1):46–60

    Article  Google Scholar 

  • Taylor HW (1980) A geomechanics classification applied to mining problems in the Shabanie and King Chrysotile asbestos mines, Rhodesia. University of Rhodesia, Harare, Zimbabwe

    Google Scholar 

  • Tran TV, Alkema D, Hack HRGK (2019) Weathering and deterioration of geotechnical properties in time of groundmasses in a tropical climate. Eng Geol 260:105221

    Article  Google Scholar 

  • Tristancho J, Caicedo B, Thorel L, Obregón N (2012) Climatic chamber with centrifuge to simulate different weather conditions. Geotech Test J 35(1):159–171

    Google Scholar 

  • Trudgill ST, Viles HA, Inkpen R, Moses C, Gosling W, Yates T, Collier P, Smith DI, Cooke RU (2001) Twenty-year weathering remeasurements at St Paul’s Cathedral, London. Earth Surf Process Landf 26(10):1129–1142

    Article  Google Scholar 

  • Tuǧrul A (2004) The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng Geol 75(3–4):215–227

    Article  Google Scholar 

  • Ulusay R, Hudson JA (eds) (2007) The blue book; The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Commission on Testing Methods ISRM, International Society for Rock Mechanics (ISRM), Turkish National Group, Ankara, Turkey

    Google Scholar 

  • Utili S, Crosta GB (2011) Modeling the evolution of natural cliffs subject to weathering: 1. Limit analysis approach. J Geophys Res Earth 116(F1)

    Google Scholar 

  • Vanacker V, Bellin N, Molina A, Kubik PW (2014) Erosion regulation as a function of human disturbances to vegetation cover: a conceptual model. Landsc Ecol 29(2):293–309

    Article  Google Scholar 

  • VanDerwerker T, Zhang L, Ling E, Benham B, Schreiber M (2018) Evaluating geologic sources of arsenic in well water in Virginia (USA). Int J Environ Res Public Health 15(4):787

    Article  Google Scholar 

  • Vázquez M, Ramírez S, Morata D, Reich M, Braun J-J, Carretier S (2016) Regolith production and chemical weathering of granitic rocks in central Chile. Chem Geol 446:87–98

    Article  Google Scholar 

  • Verhoef PNW (1997) Implications for the site investigation of rock dredging projects. Taylor & Francis, Rotterdam

    Google Scholar 

  • Vervoort A, De Wit K (1997) Correlation between dredgeability and mechanical properties of rock. Eng Geol 47(3):259–267

    Article  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater 38(4):589–604

    Article  Google Scholar 

  • Wellman HW, Wilson AT (1965) Salt weathering, a neglected geological erosive agent in coastal and arid environments. Nature 205:1097

    Article  Google Scholar 

  • Wenner D, Wannenmacher H (2009) Alborz service tunnel in Iran: TBM tunnelling in difficult ground conditions and its solutions. In: Proceedings of the 1st Regional and 8th Iranian tunneling conference, Tehran, Iran, 18–20 May 2009. Iranian Tunnelling Association (IRTA) & Tarbiat Modares University, Tehran, Iran, pp 342–353

    Google Scholar 

  • Wilson MJ (2004) Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner 39(3):233–266

    Article  Google Scholar 

  • Winkler EM (1986) The measurement of weathering rates of stone structures: a geologist’s view. APT Bull 18(4):65–70

    Article  Google Scholar 

  • Winkler E (2014) Stone in architecture; properties, durability. Springer, Berlin

    Google Scholar 

  • Wu C, Xia C, Li Z (2006) Safety assessment system for evaluating spontaneous combustion of sulfide ores in mining stope. In: Huang P, Wang Y, Li S, Zheng C, Mao Z (eds) Progress in safety science and technology, Proceedings international symposium on safety science and technology (2006 ISSST), Changsha, China, 24–27 Oct 2006. Beijing, China, China Occupational Safety and Health Association, Beijing Institute of Technology, Science Press, pp 1599–1603

    Google Scholar 

  • Yokota S, Iwamatsu A (2000) Weathering distribution in a steep slope of soft pyroclastic rocks as an indicator of slope instability. Eng Geol 55(1–2):57–68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Robert G. K. Hack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hack, H.R.G.K. (2020). Weathering, Erosion, and Susceptibility to Weathering. In: Kanji, M., He, M., Ribeiro e Sousa, L. (eds) Soft Rock Mechanics and Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-29477-9_11

Download citation

Publish with us

Policies and ethics