Skip to main content

MicroRNAs and Inflammatory Bowel Disease

  • Chapter
  • First Online:
Molecular Genetics of Inflammatory Bowel Disease

Abstract

MicroRNAs (miRNAs) represent a class of short, noncoding RNAs that act as posttranscriptional regulators of gene expression. Being implicated in numerous physiologic processes, miRNAs are believed to play a critical role in the etiology of a variety of diseases, including inflammatory bowel disease (IBD). In the course of this chapter, we elaborate on the pivotal role of miRNAs in regard to the development of innate and adaptive immune cells as well as their response to inflammatory signals. Furthermore, we summarize current knowledge on miRNAs as modulators of intestinal homeostasis and autophagy as well as regulators of epithelial barrier integrity. In recent past, miRNAs emerged as a new class of putative biomarkers detectable in a wide range of tissues and body fluids. We review current studies on miRNAs and report estimates for their clinical utility, suggesting these molecules being competitive or even superior to traditional serological IBD biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gebert LFR, MacRae IJ (2018) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20(1):21–37

    Article  CAS  Google Scholar 

  3. Mehta A, Baltimore D (2016) MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16:279–294

    Article  CAS  PubMed  Google Scholar 

  4. Cloonan N, Wani S, Xu Q et al (2011) MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 12:R126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lutter L, Hoytema van Konijnenburg DP, Brand EC et al (2018) The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 15:637–649

    Article  CAS  PubMed  Google Scholar 

  6. Füllgrabe J, Klionsky DJ, Joseph B (2014) The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol 15:65–74

    Article  PubMed  CAS  Google Scholar 

  7. Vancamelbeke M, Vermeire S (2017) The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 11:821–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gomollón F, Dignass A, Annese V et al (2017) 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J Crohns Colitis 11:3–25

    Article  PubMed  Google Scholar 

  9. Magro F, Gionchetti P, Eliakim R et al (2017) Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J Crohns Colitis 11:649–670

    Article  PubMed  Google Scholar 

  10. Lichtenstein GR, Loftus EV, Isaacs KL et al (2018) ACG clinical guideline: management of Crohn’s disease in adults. Am J Gastroenterol 113:481–517

    Article  PubMed  Google Scholar 

  11. Kornbluth A, Sachar DB (2010) Ulcerative colitis practice guidelines in adults: American college of gastroenterology, practice parameters committee. Am J Gastroenterol 105:501–523

    Article  PubMed  Google Scholar 

  12. Dotan I, Fishman S, Dgani Y et al (2006) Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn’s disease. Gastroenterology 131:366–378

    Article  CAS  PubMed  Google Scholar 

  13. Moum B, Ekbom A, Vatn MH et al (1997) Inflammatory bowel disease: re-evaluation of the diagnosis in a prospective population based study in south eastern Norway. Gut 40:328–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kappel A, Keller A (2017) MiRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clin Chem Lab Med 55:636–647

    Article  CAS  PubMed  Google Scholar 

  16. Treiber T, Treiber N, Meister G (2018) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 19:808

    Article  CAS  PubMed  Google Scholar 

  17. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  18. Leung AKL (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25:601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu S, Da Cunha AP, Rezende RM et al (2016) The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe 19:32–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberts TC (2014) The MicroRNA biology of the mammalian nucleus. Mol Ther Nucleic Acids 3:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Zuo X, Yang B et al (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee LW, Zhang S, Etheridge A et al (2010) Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 16:2170–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488

    Article  CAS  PubMed  Google Scholar 

  24. Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs – the overlooked repertoire in the dynamic microRNAome. Trends Genet 28:544–549

    Article  CAS  PubMed  Google Scholar 

  25. Wilson RC, Tambe A, Kidwell MA et al (2015) Dicer-TRBP complex formation ensures accurate mammalian MicroRNA biogenesis. Mol Cell 57:397–408

    Article  CAS  PubMed  Google Scholar 

  26. Han BW, Hung JH, Weng Z et al (2011) The 3′-to-5′ exoribonuclease nibbler shapes the 3′ ends of microRNAs bound to drosophila argonaute1. Curr Biol 21:1878–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Juzenas S, Venkatesh G, Hübenthal M et al (2017) A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res 45:9290–9301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCall MN, Kim MS, Adil M et al (2017) Toward the human cellular microRNAome. Genome Res 27:1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsitsiou E, Lindsay MA (2009) microRNAs and the immune response. Curr Opin Pharmacol 9:514–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu W, Dooley J, Chung SS et al (2015) MiR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood 125:2206–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  CAS  Google Scholar 

  32. Shaham L, Vendramini E, Ge Y et al (2015) MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of down syndrome. Blood 125:1292–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dore LC, Amigo JD, dos Santos CO et al (2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci 105:3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jee D, Yang JS, Park SM et al (2018) Dual strategies for argonaute2-mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals. Mol Cell 69:265–278.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paladini L, Fabris L, Bottai G et al (2016) Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res 35:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Navarro F, Gutman D, Meire E et al (2009) miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 114:2181–2192

    Article  CAS  PubMed  Google Scholar 

  37. Garzon R, Pichiorri F, Palumbo T et al (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci 103:5078–5083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu J, Guo S, Ebert BL et al (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gatsiou A, Boeckel J-N, Randriamboavonjy V, Stellos K (2012) MicroRNAs in platelet biogenesis and function: implications in vascular homeostasis and inflammation. Curr Vasc Pharmacol 10:524–531

    Article  CAS  PubMed  Google Scholar 

  40. Kalla R, Ventham NT, Kennedy NA et al (2015) MicroRNAs: new players in IBD. Gut 64:504–513

    Article  CAS  PubMed  Google Scholar 

  41. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Testa U, Pelosi E, Castelli G, Labbaye C (2017) miR-146 and miR-155: two key modulators of immune response and tumor development. Non-coding. RNA 3:22

    Google Scholar 

  43. Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V (2018) Anti-inflammatory MicroRNAs and their potential for inflammatory diseases treatment. Front Immunol 9:1377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF- B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 103:12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Essandoh K, Li Y, Huo J, Fan GC (2016) MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock 46:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mann M, Mehta A, Zhao JL et al (2017) An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun 8:851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wu X-Q, Dai Y, Yang Y et al (2016) Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation. Immunology 148:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roy S (2016) miRNA in macrophage development and function. Antioxid Redox Signal 25:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peng L, Zhang H, Hao Y et al (2016) Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. EBioMedicine 14:83–96

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li H, Jiang T, Li MQ et al (2018) Transcriptional regulation of macrophages polarization by microRNAs. Front Immunol 9:1175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Smyth LA, Boardman DA, Tung SL et al (2015) MicroRNAs affect dendritic cell function and phenotype. Immunology 144:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brain O, Owens BMJ, Pichulik T et al (2013) The intracellular sensor NOD2 induces microrna-29 expression in human dendritic cells to limit IL-23 release. Immunity 39:521–536

    Article  CAS  PubMed  Google Scholar 

  53. Kim SJ, Gregersen PK, Diamond B (2013) Regulation of dendritic cell activation by microRNA let-7c and BLIMP1. J Clin Invest 123:823–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cooper MD (2015) The early history of B cells. Nat Rev Immunol 15:191–197

    Article  CAS  PubMed  Google Scholar 

  56. Okuyama K, Ikawa T, Gentner B et al (2013) MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors. Proc Natl Acad Sci 110:13410–13415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(80):83–86

    Article  CAS  PubMed  Google Scholar 

  58. Coffre M, Koralov SB (2017) miRNAs in B cell development and lymphomagenesis. Trends Mol Med 23:721–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mehta A, Mann M, Zhao JL et al (2015) The microRNA-212/132 cluster regulates B cell development by targeting Sox4. J Exp Med 212:1679–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li G, So AYL, Sookram R et al (2018) Epigenetic silencing of miR-125b is required for normal B-cell development. Blood 131:1920–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuchen S, Resch W, Yamane A et al (2010) Regulation of MicroRNA expression and abundance during lymphopoiesis. Immunity 32:828–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gonzalez-Martin A, Adams BD, Lai M et al (2016) The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity. Nat Immunol 17:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rothenberg EV, Moore JE, Yui MA (2008) Launching the T-cell-lineage developmental programme. Nat Rev Immunol 8:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Regelin M, Blume J, Pommerencke J et al (2015) Responsiveness of developing T cells to IL-7 signals is sustained by miR-17∼92. J Immunol 195:4832–4840

    Article  CAS  PubMed  Google Scholar 

  65. Ghisi M, Corradin A, Basso K et al (2011) Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood 117:7053–7062

    Article  CAS  PubMed  Google Scholar 

  66. Baumjohann D, Ansel KM (2013) MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 13:666–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nagasawa T (2006) Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 6:107–116

    Article  CAS  PubMed  Google Scholar 

  68. Alivernini S, Kurowska-Stolarska M, Tolusso B et al (2016) MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun 7:12970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Barnes NA, Stephenson S, Cocco M et al (2012) BLIMP-1 and STAT3 counterregulate MicroRNA-21 during plasma cell differentiation. J Immunol 189:253–260

    Article  CAS  PubMed  Google Scholar 

  70. Lu D, Nakagawa R, Lazzaro S et al (2014) The miR-155–PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. J Exp Med 211:2183–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andersen MH, Schrama D, Thor Straten P, Becker JC (2006) Cytotoxic T cells. J Invest Dermatol 126:32–41

    Article  CAS  PubMed  Google Scholar 

  72. Trifari S, Pipkin ME, Bandukwala HS et al (2013) MicroRNA-directed program of cytotoxic CD8+ T-cell differentiation. Proc Natl Acad Sci 110:18608–18613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dudda JC, Salaun B, Ji Y et al (2013) MicroRNA-155 is required for effector cd8+t cell responses to virus infection and cancer. Immunity 38:742–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112:1557–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baumjohann D, Heissmeyer V (2018) Posttranscriptional gene regulation of T follicular helper cells by RNA-binding proteins and microRNAs. Front Immunol 9:1794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Workman CJ, Szymczak-Workman AL, Collison LW et al (2009) The development and function of regulatory T cells. Cell Mol Life Sci 66:2603–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Du C, Liu C, Kang J et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259

    Article  CAS  PubMed  Google Scholar 

  78. Mycko MP, Cichalewska M, Machlanska A et al (2012) microRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc Natl Acad Sci 109:E1248–E1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Murugaiyan G, Da Cunha AP, Ajay AK et al (2015) MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 125:1069–1080

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang Z, Xue Z, Liu Y et al (2018) MicroRNA-181c promotes Th17 cell differentiation and mediates experimental autoimmune encephalomyelitis. Brain Behav Immun 70:305–314

    Article  CAS  PubMed  Google Scholar 

  81. Ichiyama K, Gonzalez-Martin A, Kim BS et al (2016) The MicroRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity 44:1284–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yao R, Ma YL, Liang W et al (2012) MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS One 7:e46082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakahama T, Hanieh H, Nguyen NT et al (2013) Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation. Proc Natl Acad Sci 110:11964–11969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu R, Huffaker TB, Kagele DA et al (2013) MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. J Immunol 190:5972–5980

    Article  CAS  PubMed  Google Scholar 

  85. Wang D, Tang M, Zong P et al (2018) MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis. Front Physiol 9:686

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liu SQ, Jiang S, Li C et al (2014) Mir-17-92 cluster targets phosphatase and tensin homology and ikaros family zinc finger 4 to promote th17-mediated inflammation. J Biol Chem 289:12446–12456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li B, Wang X, Choi IY et al (2017) miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest 127:3702–3716

    Article  PubMed  PubMed Central  Google Scholar 

  88. O’Connell RM, Kahn D, Gibson WSJ et al (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33:607–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jiang S, Li C, Olive V et al (2011) Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118:5487–5497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Singh PB, Pua HH, Happ HC et al (2017) MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J Exp Med 214:3627–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pua HH, Steiner DF, Patel S et al (2016) MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production. Immunity 44:821–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu LF, Thai TH, Calado DP et al (2009) Foxp3-dependent MicroRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30:80–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu LF, Boldin MP, Chaudhry A et al (2010) Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142:914–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu Y, Hippen KL, Lemire AL et al (2016) MiR-146b antagomir-treated human Tregs acquire increased GVHD inhibitory potency. Blood 128:1424–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takahashi H, Kanno T, Nakayamada S et al (2012) TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol 13:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. de Kouchkovsky D, Esensten JH, Rosenthal WL et al (2013) microRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis. J Immunol 191:1594–1605

    Article  PubMed  CAS  Google Scholar 

  97. Kohlhaas S, Garden OA, Scudamore C et al (2009) Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182:2578–2582

    Article  CAS  PubMed  Google Scholar 

  98. Maul J, Baumjohann D (2016) Emerging roles for MicroRNAs in T follicular helper cell differentiation. Trends Immunol 37:297–309

    Article  CAS  PubMed  Google Scholar 

  99. Baumjohann D, Kageyama R, Clingan JM et al (2013) The microRNA cluster miR-17∼92 promotes T FH cell differentiation and represses subset-inappropriate gene expression. Nat Immunol 14:840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. De Souza HSP, Fiocchi C (2016) Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 13:13–27

    Article  PubMed  CAS  Google Scholar 

  101. Franke A, McGovern DPB, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Franke A, Balschun T, Sina C et al (2010) Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet 42:292–294

    Article  CAS  PubMed  Google Scholar 

  103. Khalili H, Chan SSM, Lochhead P et al (2018) The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 15:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Berkowitz L, Schultz BM, Salazar GA et al (2018) Impact of cigarette smoking on the gastrointestinal tract inflammation: opposing effects in Crohn’s disease and ulcerative colitis. Front Immunol 9:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14:329–342

    Article  CAS  PubMed  Google Scholar 

  106. Ceppi M, Pereira PM, Dunand-Sauthier I et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci 106:2735–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bala S, Marcos M, Kodys K et al (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444

    Article  CAS  PubMed  Google Scholar 

  108. Béres NJ, Szabó D, Kocsis D et al (2016) Role of altered expression of miR-146a, miR-155, and miR-122 in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 22:327–335

    Article  PubMed  Google Scholar 

  109. Min M, Peng L, Yang Y et al (2014) Microrna-155 is involved in the pathogenesis of ulcerative colitis by targeting FOXO3a. Inflamm Bowel Dis 20:652–659

    Article  PubMed  Google Scholar 

  110. Lu ZJ, Wu JJ, Jiang WL et al (2017) MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol 23:976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li J, Zhang J, Guo H et al (2018) Critical role of alternative M2 skewing in miR-155 deletion-mediated protection of colitis. Front Immunol 9:904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Van Der Goten J, Vanhove W, Lemaire K et al (2014) Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis. PLoS One 9:e116117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhao JL, Rao DS, O’Connell RM et al (2013) MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. elife 2013:e00537

    Article  Google Scholar 

  114. Magilnick N, Reyes EY, Wang W-L et al (2017) miR-146a – Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci 114:201706833

    Article  CAS  Google Scholar 

  115. Grants J, Wegrzyn J, Knapp D et al (2017) Single cell-resolution analysis of HSC dysfunction in Mir-146a knockout mice. Blood 130:714

    Google Scholar 

  116. Tang Y, Luo X, Cui H et al (2009) MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075

    Article  CAS  PubMed  Google Scholar 

  117. Bazzoni F, Rossato M, Fabbri M et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci 106:5282–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang Y, Han Z, Fan Y et al (2017) MicroRNA-9 inhibits NLRP3 inflammasome activation in human atherosclerosis inflammation cell models through the JAK1/STAT signaling pathway. Cell Physiol Biochem 41:1555–1571

    Article  CAS  PubMed  Google Scholar 

  119. Ben-Shachar S, Yanai H, Horev HS et al (2016) MicroRNAs expression in the ileal pouch of patients with ulcerative colitis is robustly up-regulated and correlates with disease phenotypes. PLoS One 11:e0159956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Fasseu M, Tréton X, Guichard C et al (2010) Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One 5:e13160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Toiyama Y, Okugawa Y, Tanaka K et al (2017) A panel of methylated MicroRNA biomarkers for identifying high-risk patients with ulcerative colitis-associated colorectal cancer. Gastroenterology 153:1634–1646.e8

    Article  CAS  PubMed  Google Scholar 

  122. Ma C, Li Y, Li M et al (2014) microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection. Mol Immunol 62:150–158

    Article  CAS  PubMed  Google Scholar 

  123. Koukos G, Polytarchou C, Kaplan JL et al (2013) MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology 145:842–852.e2

    Article  CAS  PubMed  Google Scholar 

  124. Xue X, Feng T, Yao S et al (2011) Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. J Immunol 187:5879–5886

    Article  CAS  PubMed  Google Scholar 

  125. Wu W, He C, Liu C et al (2015) miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut 64:1755–1764

    Article  CAS  PubMed  Google Scholar 

  126. Cuthbert AP, Fisher SA, Mirza MM et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122:867–874

    Article  CAS  PubMed  Google Scholar 

  127. Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou H, Xiao J, Wu N et al (2015) MicroRNA-223 regulates the differentiation and function of intestinal dendritic cells and macrophages by targeting C/EBPβ. Cell Rep 13:1149–1160

    Article  CAS  PubMed  Google Scholar 

  129. Neudecker V, Haneklaus M, Jensen O et al (2017) Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J Exp Med 214:1737–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Polytarchou C, Oikonomopoulos A, Mahurkar S et al (2015) Assessment of circulating MicroRNAs for the diagnosis and disease activity evaluation in patients with ulcerative colitis by using the nanostring technology. Inflamm Bowel Dis 21:2533–2539

    Article  PubMed  Google Scholar 

  131. Ungaro R, Mehandru S, Allen PB et al (2017) Ulcerative colitis. Lancet (London, England) 389:1756–1770

    Article  Google Scholar 

  132. Torres J, Mehandru S, Colombel J-F, Peyrin-Biroulet L (2017) Crohn’s disease. Lancet (London, England) 389:1741–1755

    Article  Google Scholar 

  133. Singh UP, Murphy AE, Enos RT et al (2014) miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology 143:478–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ma F, Xu S, Liu X et al (2011) The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol 12:861–869

    Article  CAS  PubMed  Google Scholar 

  135. Steiner DF, Thomas MF, Hu JK et al (2011) MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells. Immunity 35:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Paraskevi A, Theodoropoulos G, Papaconstantinou I et al (2012) Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis 6:900–904

    Article  PubMed  Google Scholar 

  137. Wu F, Zhang S, Dassopoulos T et al (2010) Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm Bowel Dis 16:1729–1738

    Article  PubMed  Google Scholar 

  138. Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR (2011) Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10−/− mice precedes expression in the colon. J Immunol 187:5834–5841

    Article  CAS  PubMed  Google Scholar 

  139. Takagi T, Naito Y, Mizushima K et al (2010) Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol 25(Suppl 1):S129–S133

    Article  CAS  PubMed  Google Scholar 

  140. Thorlacius-Ussing G, Schnack Nielsen B, Andersen V et al (2017) Expression and localization of miR-21 and miR-126 in mucosal tissue from patients with inflammatory bowel disease. Inflamm Bowel Dis 23:739–752

    Article  PubMed  Google Scholar 

  141. Ando Y, Mazzurana L, Forkel M et al (2016) Downregulation of MicroRNA-21 in colonic CD3+T cells in UC remission. Inflamm Bowel Dis 22:2788–2793

    Article  PubMed  Google Scholar 

  142. Eastaff-Leung N, Mabarrack N, Barbour A et al (2010) Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J Clin Immunol 30:80–89

    Article  CAS  PubMed  Google Scholar 

  143. Sanctuary MR, Huang RH, Jones AA et al (2019) miR-106a deficiency attenuates inflammation in murine IBD models. Mucosal Immunol 12:200–211

    Article  CAS  PubMed  Google Scholar 

  144. Keith BP, Barrow JB, Toyonaga T et al (2018) Colonic epithelial miR-31 associates with the development of Crohn’s phenotypes. JCI Insight 3:e122788

    Article  PubMed Central  Google Scholar 

  145. Zhou W, Pal AS, Hsu AYH et al (2018) MicroRNA-223 suppresses the canonical NF-κB pathway in basal keratinocytes to dampen neutrophilic inflammation. Cell Rep 22:1810–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhou Q, Haupt S, Kreuzer JT et al (2015) Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis 74:1265–1274

    Article  CAS  PubMed  Google Scholar 

  147. Chapman CG, Pekow J (2015) The emerging role of miRNAs in inflammatory bowel disease: a review. Ther Adv Gastroenterol 8:4–22

    Article  CAS  Google Scholar 

  148. Cao B, Zhou X, Ma J et al (2017) Role of MiRNAs in inflammatory bowel disease. Dig Dis Sci 62:1426–1438

    Article  CAS  PubMed  Google Scholar 

  149. Nguyen HTT, Dalmasso G, Müller S et al (2014) Crohn’s disease-associated adherent invasive escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 146:508–519

    Article  CAS  PubMed  Google Scholar 

  150. Cooney R, Baker J, Brain O et al (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16:90–97

    Article  CAS  PubMed  Google Scholar 

  151. Travassos LH, Carneiro LAM, Ramjeet M et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55–62

    Article  CAS  PubMed  Google Scholar 

  152. Chuang AY, Chuang JC, Zhai Z et al (2014) NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis 20:126–135

    Article  PubMed  Google Scholar 

  153. Neunlist M, Van Landeghem L, Mahé MM et al (2013) The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 10:90–100

    Article  CAS  PubMed  Google Scholar 

  154. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  PubMed  PubMed Central  Google Scholar 

  155. Nekrasova O, Green KJ (2013) Desmosome assembly and dynamics. Trends Cell Biol 23:537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang H, Chao K, Ng SC et al (2016) Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol 17:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Liu M, Tang Q, Qiu M et al (2011) MiR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett 585:2998–3005

    Article  CAS  PubMed  Google Scholar 

  158. Xue Q, Sun K, Deng HJ et al (2013) Anti-miRNA-221 sensitizes human colorectal carcinoma cells to radiation by upregulating PTEN. World J Gastroenterol 19:9307–9317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ebnet K (2017) Junctional adhesion molecules (JAMs): cell adhesion receptors with pleiotropic functions in cell physiology and development. Physiol Rev 97:1529–1554

    Article  CAS  PubMed  Google Scholar 

  160. Chen Y, Xiao Y, Ge W et al (2013) MiR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells. Cell Death Dis 4:e541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kurinna S, Schäfer M, Ostano P et al (2014) A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nat Commun 5:5099

    Article  CAS  PubMed  Google Scholar 

  163. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  164. Iborra M, Bernuzzi F, Invernizzi P, Danese S (2012) MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun Rev 11:305–314

    Article  CAS  PubMed  Google Scholar 

  165. Zahm AM, Hand NJ, Tsoucas DM et al (2014) Rectal microRNAs are perturbed in pediatric inflammatory bowel disease of the colon. J Crohns Colitis 8:1108–1117

    Article  PubMed  Google Scholar 

  166. Zahm AM, Thayu M, Hand NJ et al (2011) Circulating microRNA is a biomarker of pediatric crohn disease. J Pediatr Gastroenterol Nutr 53:26–33

    Article  CAS  PubMed  Google Scholar 

  167. Duttagupta R, DiRienzo S, Jiang R et al (2012) Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS One 7:e31241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hübenthal M, Hemmrich-Stanisak G, Degenhardt F et al (2015) Sparse modeling reveals miRNA signatures for diagnostics of inflammatory bowel disease. PLoS One 10:1–20

    Article  CAS  Google Scholar 

  169. Schaefer JS, Attumi T, Opekun AR et al (2015) MicroRNA signatures differentiate Crohn’s disease from ulcerative colitis. BMC Immunol 16:1–13

    Article  CAS  Google Scholar 

  170. Iborra M, Bernuzzi F, Correale C et al (2013) Identification of serum and tissue micro-RNA expression profiles in different stages of inflammatory bowel disease. Clin Exp Immunol 173:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wu F, Guo NJ, Tian H et al (2011) Peripheral blood MicroRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis 17:241–250

    Article  PubMed  Google Scholar 

  172. Wang H, Zhang S, Yu Q et al (2016) Circulating MicroRNA223 is a new biomarker for inflammatory bowel disease. Med (United States) 95:e2703

    CAS  Google Scholar 

  173. Langhorst J, Elsenbruch S, Koelzer J et al (2008) Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am J Gastroenterol 103:162–169

    Article  PubMed  Google Scholar 

  174. Dai J, Liu WZ, Zhao YP et al (2007) Relationship between fecal lactoferrin and inflammatory bowel disease. Scand J Gastroenterol 42:1440–1444

    Article  CAS  PubMed  Google Scholar 

  175. Delva E, Tucker DK, Kowalczyk AP (2009) The desmosome. Cold Spring Harb Perspect Biol 1:a002543–a002543

    Article  PubMed  PubMed Central  Google Scholar 

  176. Cichon C, Sabharwal H, Rüter C, Schmidt MA (2014) MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions. Tissue Barriers 2:e944446

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhou G, Yang L, Gray A et al (2017) The role of desmosomes in carcinogenesis. Onco Targets Ther 10:4059–4063

    Article  PubMed  PubMed Central  Google Scholar 

  178. Tili E, Michaille JJ, Piurowski V et al (2017) MicroRNAs in intestinal barrier function, inflammatory bowel disease and related cancers – their effects and therapeutic potentials. Curr Opin Pharmacol 37:142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Peck BCE, Weiser M, Lee SE et al (2015) MicroRNAs classify different disease behavior phenotypes of Crohn’s disease and may have prognostic utility. Inflamm Bowel Dis 21:2178–2187

    Article  PubMed  Google Scholar 

  180. Lewis A, Mehta S, Hanna LN et al (2015) Low serum levels of microRNA-19 are associated with a stricturing Crohn’s disease phenotype. Inflamm Bowel Dis 21:1926–1934

    Article  PubMed  Google Scholar 

  181. Cheng X, Zhang X, Su J et al (2015) MiR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn’s disease. Sci Rep 5:10397

    Article  PubMed  PubMed Central  Google Scholar 

  182. Wu F, Zikusoka M, Trindade A et al (2008) MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 135:1624–1635.e24

    Article  CAS  PubMed  Google Scholar 

  183. Feng X, Wang H, Ye S et al (2012) Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-κB inhibitor IκBα. PLoS One 7:e52782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yang Y, Ma Y, Shi C et al (2013) Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun 434:746–752

    Article  CAS  PubMed  Google Scholar 

  185. Polytarchou C, Hommes DW, Palumbo T et al (2015) MicroRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice. Gastroenterology 149:981–992

    Article  CAS  PubMed  Google Scholar 

  186. Koukos G, Polytarchou C, Kaplan JL et al (2015) A MicroRNA signature in pediatric ulcerative colitis: deregulation of the miR-4284/CXCL5 pathway in the intestinal epithelium. Inflamm Bowel Dis 21:996–1005

    Article  PubMed  Google Scholar 

  187. Bian Z, Li L, Cui J et al (2011) Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol 225:544–553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to Dirk Baumjohann for reviewing the draft. His additions and revisions improved the manuscript considerably. Furthermore, we want to thank Tine Pape for her assistance in designing the figures generated for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonas Juzėnas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hübenthal, M., Franke, A., Lipinski, S., Juzėnas, S. (2019). MicroRNAs and Inflammatory Bowel Disease. In: Hedin, C., Rioux, J., D'Amato, M. (eds) Molecular Genetics of Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28703-0_10

Download citation

Publish with us

Policies and ethics