Skip to main content

Measurement Report and Presentation

  • Chapter
  • First Online:
Quality Assured Measurement

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

  • 293 Accesses

Abstract

Any report and presentation of measurement results will include both the measured value and some estimate of the measurement uncertainty in the measured value. In this penultimate chapter, and prior to the final step of decision-making covered in Chap. 6, we consider how best to model measurement information throughout the measurement process—from entity stimulus, through instrument response to restitution of the measurement value. A general and broad formulation is sought of differences applicable in both the physical and social sciences.

Rossi (Measurement and probability – A probabilistic theory of measurement with applications, in Springer Series in Measurement Science and Technology, 2014) in another book in this series gives an account of a probabilistic theory of measurement. In this chapter, we build on Rossi’s approach when presenting measurement for both the physical and social sciences; extending the probabilistic theory for treating measurement error and uncertainty by using concepts of entropy and symmetry.

The concept of entropy can in fact be invoked analogously to describe ‘dissipation of useful information’—to paraphrase Carnot—at each of the three main stages in the measurement process—from (A) object, through (B) measurement to (C) response—not only to make a descriptive presentation (as in probability theory of measurement) but also in an explanatory and predictive way.

The entropy concept can also help when presenting measurement results at every level in the quantity calculus hierarchy (Table 3.1) from mere labels for nominal syntax, through semantic and pragmatic measures, to a full expression in terms of the nature of the quantity measured and effectiveness in changing conduct. This approach is particularly useful for prioritising (Sect. 5.2.1) among a plethora of potentially important factors (such as identified in a critical incidence process). This discussion will also prepare the ground for the final chapter of book, when decisions about product (in the widest sense) based on measurement need to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A single entity which changes its property values during a measurement is considered as different entities.

  2. 2.

    ‘Y’ in Wold et al. (2001) corresponds to ‘Z’ in our notation.

  3. 3.

    https://en.wikipedia.org/wiki/Irreducible_representation.

  4. 4.

    It is easier to maximise the log-likelihood (which has the same maximum as the likelihood) since it is a sum rather than a product of terms, as in the case of the Rasch model.

References

  • Y Akao, G H Mazur, The leading edge in QFD: past, present and future, Int. J. Quality & Reliability Management 20, 20–35 (2003)

    Google Scholar 

  • A. Agresti, Categorical Data Analysis, 3rd edn. (Wiley, Hoboken, 2013). ISBN 978-0-470-46363-5

    MATH  Google Scholar 

  • D. Andrich, Rasch Models for Measurement (Sage Publications, Beverly Hills, 1988)

    Book  Google Scholar 

  • D. Andrich, A law of ordinal random error: The Rasch measurement model and random error distributions of ordinal assessments. J. Phys. Conf. Series 1044, 012055 (2017). https://doi.org/10.1088/1742-6596/1044/1/012055. J. of Phys. Conference Series IMEKO 2017, IOP Conf. Series.

    Article  Google Scholar 

  • F. Attneave, Informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954)

    Article  Google Scholar 

  • H. Barlow, The exploitation of regularities in the environment by the brain. Behav. Brain Sci. 24, 602–607 (2001)

    Article  Google Scholar 

  • E. Bashkansky, S. Dror, Matrix approach to analysis of human errors and their prevention by quality engineering and managerial tools. Qual. Reliab. Eng. Int. 32(2), 535–545 (2015). https://doi.org/10.1002/qre.1770

    Article  Google Scholar 

  • E. Bashkansky, T. Gadrich, Some metrological aspects of ordinal measurements. Accredit. Qual. Assur. 15, 331–336 (2010). https://doi.org/10.1007/s00769-009-0620-x

    Article  Google Scholar 

  • M.J. Bitner, B.H. Booms, M. Stanfield Trereault, The service encounter: diagnosing favorable and unfavorable incidents. J. Mark. 54, 71–84 (1990)

    Article  Google Scholar 

  • J.P. Bentley (2005) Principles of Measurement Systems, Pearson Education Limited www.pearsoned.co.uk 4th edition ISBN 0 130 43028 5

    Google Scholar 

  • M. Boers, J.R. Kirwan, P. Tugwell, et al., The OMERACT Handbook (OMERACT, Ottawa, 2018). https://omeract.org/resources

    Google Scholar 

  • L. Brillouin, Science and information theory, in Physics Today, vol. 15, 2nd edn., (Academic Press, Cambridge, 1962). https://doi.org/10.1063/1.3057866

    Chapter  Google Scholar 

  • L. Carnot, Principes Fondamentaux de l’Équilibre et du Movement [Fundamental Principles of Equilibrium and Movement], Paris (1803)

    Google Scholar 

  • L K. Chan, M.L. Wu, Quality function deployment: a literature review, Eur. J. Operational Research 143, 463–97 (2002), https://doi.org/10.1080/00207540600575779

    Google Scholar 

  • L. Chen, X. Liang, T. Li, Collaborative performance research on multi-level hospital management based on synergy entropy-HoQ. Entropy 17, 2409–2431 (2015). https://doi.org/10.3390/e1704240

    Article  ADS  Google Scholar 

  • B. Christe, E. Cooney, R. Rogers, Analysis of the impact of a radiofrequency identification asset-tracking system in the healthcare setting. J. Clin. Eng. 35, 49–55 (2010)

    Article  Google Scholar 

  • K.B. Christensen, M. Olsberg, Marginal maximum likelihood estimation in polytomous Rasch models using SAS, in Annales de l’ISUP (2013), https://www.researchgate.net/publication/258396258_Conditional_Maximum_Likelihood_Estimation_in_Polytomous_Rasch_Models_Using_SAS. Accessed 31 Aug 2018

  • L. J. Cronbach, R. Nageswari, and G.C. Gleser (1963). Theory of generalizability: A liberation of reliability theory. The British Journal of Statistical Psychology, 16, 137–163

    Google Scholar 

  • J. Dagman, R. Emardson, S. Kanerva, L.R. Pendrill, A. Farbrot, S. Abbas, A. Nihlstrand, Measuring comfort for heavily-incontinent patients assisted by Absorbent products in several contexts, in Incontinence in The Engineering Challenge IX, IMECHE, London, 5–6 November 2013 (2013)

    Google Scholar 

  • W.R. Dardick, Reweighting Data in the Spirit of Tukey: Using Bayesian Posterior Probabilities as Rasch Residuals for Studying Misfit, Dissertation, University of Maryland (2010)

    Google Scholar 

  • W.R. Dardick, R.J. Mislevy, Reweighting data in the spirit of Tukey. Educ. Psychol. Meas. 76, 88–113 (2016). https://doi.org/10.1177/0013164415583351

    Article  Google Scholar 

  • J.G. Dolan, Shared decision-making – Transferring research into practice: the analytic hierarchy process (AHP). Patient Educ. Couns. 73, 418–425 (2008). https://doi.org/10.1016/j.pec.2008.07.032

    Article  Google Scholar 

  • N. Dorans, T. Moses, D. Eignor, Principles and Practices of Test Score Equating (Educational Testing Service, Princeton, 2010). ETS RR-10-29.

    Book  Google Scholar 

  • G.H. Fischer, The linear logistic test model as an instrument in educational research. Acta Psychol. 37, 359–374 (1973). https://www.sciencedirect.com/science/article/pii/0001691873900036

    Article  Google Scholar 

  • W. P. Fisher Jr. (2015) Rasch measurement as a basis for metrologically traceable standards Rasch Meas. Trans. 28 1492–3

    Google Scholar 

  • J.A. Fisher, T. Monahan, Evaluation of real-time location systems in their hospital contexts. Int. J. Med. Inform. 81, 705–712 (2012)

    Article  Google Scholar 

  • R. Fleischmann, Einheiteninvariante Gröβengleichungen, Dimension. Der Mathematische und Naturwissenschaftliche Unterricht 12, 386–399 (1960)

    Google Scholar 

  • T. Gadrich, E Bashkansky, Ricardas Zitikis (2014), Assessing variation: a unifying approach for all scales of measurement, Qual. Quant., http://dx.doi.org/10.1007/s11135-014-0040-9

    Google Scholar 

  • H. Goldstein, Francis Galton, measurement, psychometrics and social progress. Assess. Educ. Princ Policy Pract. 19(2), 147–158 (2012). www.bristol.ac.uk/cmm/team/hg/full-publications/2012/Galton.pdf

    Google Scholar 

  • D.D. Gremler, The critical incident technique in service research. J. Serv. Res. 7, 65–89 (2004)

    Article  Google Scholar 

  • L. Guttman, What is not what in statistics. Stat. 26, 81–107 (1977)

    Google Scholar 

  • Y. Heerkens, J. Engels, C. Kuiper, J. Van Der Gulden, R. Oostendorp, The use of the ICF to describe work related factors influencing the health of employees. Disabil. Rehabil. 26, 1060–1066 (2004). https://doi.org/10.1080/09638280410001703530

    Article  Google Scholar 

  • J.C. Helton, Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. J. Stat. Comput. Simul. 57, 3–76 (1997)

    Article  ADS  MATH  Google Scholar 

  • J.C. Helton et al., Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91, 1175–1209 (2006)

    Article  Google Scholar 

  • M.C.E. Hermans, J.G.J. Hoeijmakers, C.G. Faber, I.S.J. Merkies, Reconstructing the Rasch-built Myotonic dystrophy type 1 activity and participation scale. PLoS One 10(10), e0139944 (2015). https://doi.org/10.1371/journal.pone.0139944

    Article  Google Scholar 

  • H. Hoijtink, A. Boomsma, Statistical inferences based on latent ability estimates. Psychometrika 61, 313–330 (1996)

    Article  MATH  Google Scholar 

  • S.M. Humphry, The role of the unit in physics and psychometrics. Measurement 9, 1–24 (2011)

    Google Scholar 

  • JCGM 100:2008 Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections) in Joint Committee on Guides in Metrology (JCGM)(2008)

    Google Scholar 

  • P. Jeter, C. Rozanski, R. Massof, O. Adeyemo, G. Dagnelie, the PLOVR Study Group, Development of the ultra-low vision functioning questionnaire (ULV-VFQ). Transl. Vis. Sci. Technol. 6(3), 11 (2017). https://doi.org/10.1167/tvst.6.3.11

    Article  Google Scholar 

  • W. Kintsch, The Representation of Meaning in Memory (Lawrence Erlbaum Associates, Hillsdale, 1974)

    Google Scholar 

  • G.J. Klir, T.A. Folger, Fuzzy Sets, Uncertainty and Information (Prentice Hall, Upper Saddle River, 1988). ISBN 0-13-345984-5

    MATH  Google Scholar 

  • H. Knox, A scale, based on the work at Ellis Island, for estimating mental defect. J. Am. Med. Assoc. LXII(10), 741–747 (1914)

    Article  Google Scholar 

  • S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Statist. 22, 79–86 (1951). https://doi.org/10.1214/aoms/1177729694

    Article  MathSciNet  MATH  Google Scholar 

  • S.L. Latimer, Using the linear logistic test model to investigate a discourse-based model of Reading comprehension. Educ. Res. Perspect. 9(1), 73–94 (1982). https://www.rasch.org/erp6.htm

    Google Scholar 

  • J.M. Linacre, The Rasch model cannot be “disproved”! Rasch Meas. Trans. 10(3), 512–514 (1996)

    Google Scholar 

  • J.M. Linacre, Optimizing rating scale category effectiveness. J. Appl. Meas. 3(1), 85–106 (2002)

    Google Scholar 

  • J.M. Linacre, “Estimation methods for Rasch measures”, Chapter 2, in Introduction to Rasch Measurement, ed. by E.V. Smith, R.M. Smith (JAM Press, Maple Grove, 2004a)

    Google Scholar 

  • J.M. Linacre, “Rasch model estimation: further topics”, Chapter 24, in Introduction to Rasch Measurement, ed. by E.V. Smith, R.M. Smith (JAM Press, Maple Grove, 2004b).

    Google Scholar 

  • J.M. Linacre, Discrimination, Guessing and carelessness asymptotes: estimating IRT parameters with Rasch. Rasch Meas. Trans. 18(1), 959–960 (2004c)

    Google Scholar 

  • J.M. Linacre, Rasch model with an error term. Rasch Meas. Trans. 23, 1238 (2010)

    Google Scholar 

  • J.M. Linacre, W.P. Fisher Jr., Harvey Goldstein’s objections to Rasch measurement: a response from Linacre and Fisher. Rasch Meas. Trans. 26(3), 1383–1389 (2012)

    Google Scholar 

  • J.M. Linacre, J.W. Heinemann, B.D. Wright, C.V. Granger, B.B. Hamilton, The structure and stability of the functional independence measure. Arch. Phys. Med. Rehabil. 75, 127–132 (1994)

    Google Scholar 

  • F.M. Lord, Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability. Psychometrika 48, 233–245 (1983)

    Article  MATH  Google Scholar 

  • R.W. Massof, Are subscales compatible with univariate measures, in IOMW 2014 workshop, Philadelphia (PA, USA) (2014). https://sites.google.com/site/iomw2014archive/iomw-program

  • R.W. Massof, C. Bradley, A strategy for measuring patient preferences to incorporate in benefit-risk assessment if new ophthalmic devices and procedures. J Phys Conf Ser. 772, 012047 (2016). https://doi.org/10.1088/1742-6596/772/1/012047

    Article  Google Scholar 

  • R.W. Massof, L. Ahmadian, L.L. Grover, J.T. Deremeik, J.E. Goldstein, C. Rainer, C. Epstein, G.D. Barnett, The activity inventory: an adaptive visual function questionnaire. Optom. Vis. Sci. 84, 763–774 (2007)

    Article  Google Scholar 

  • J. Melin, S.J Cano, L.R Pendrill, Metrology of human-based perceptions: The role of entropy in construct specification equations to improve the validity of cognitive tests, in Perspectives on Science (POS), Measurement at the Crossroads special issue, submitted 190520 (2019)

    Google Scholar 

  • A. Mencattini, L. Mari, A conceptual framework for concept definition in measurement: The case of ‘sensitivity’. Measurement 72, 77–87 (2015)

    Article  Google Scholar 

  • G.A. Miller, The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  • R.J. Mislevy, Bayes model estimates in item response models. Psychometrika 51, 177–195 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Nordin, R. Dybkaer, U. Forsum, X. Fuentes-Arderiu, F. Pontet, Vocabulary on nominal property, examination, and related concepts for clinical laboratory sciences (IFCC-IUPAC recommendations 2017). Pure Appl. Chem. 90(5), 913–935 (2018). https://doi.org/10.1515/pac-2011-0613

    Article  Google Scholar 

  • I. Partchev, A Visual Guide to Item Response Theory (Friedrich-Schiller-Universität Jena, Jena, 2004). https://www.coursehero.com/file/28232270/Partchev-VisualIRTpdf/

    Google Scholar 

  • O. Pele, M. Werman, The quadratic-chi histogram distance family, in Computer Vision–ECCV 2010 (2010). pp. 749–762. www.cs.huji.ac.il/~werman/Papers/ECCV2010.pdf

  • L.R. Pendrill, Man as a measurement instrument. NCSLI Meas. J. Meas. Sci. 9, 24–35 (2014a)

    Article  Google Scholar 

  • L.R. Pendrill, Using measurement uncertainty in decision-making & conformity assessment. Metrologia 51, S206 (2014b). https://doi.org/10.1088/0026-1394/51/4/S206

    Article  ADS  Google Scholar 

  • L.R. Pendrill, Limits to the reliability of the Rasch psychometric model. ENBIS 2017 (Naples, Sept.) (2017)

    Google Scholar 

  • L.R. Pendrill, W.P. Fisher Jr., Counting and quantification: comparing psychometric and metrological perspectives on visual perceptions of number. Measurement 71, 46–55 (2015). https://doi.org/10.1016/j.measurement.2015.04.010

    Article  Google Scholar 

  • L.R. Pendrill, J. Melin, S. Cano and the NeuroMET consortium 2019, Metrological references for health care based on entropy, 19th International Congress of Metrology, Paris (FR), EDP Science: web of conference open access, https://cfmetrologie.edpsciences.org/component/issues/, in press

    Google Scholar 

  • L.R. Pendrill, N. Petersson, Metrology of human-based and other categorical measurements. Meas. Sci. Technol. 27, 094003 (2016). https://doi.org/10.1088/0957-0233/27/9/094003

    Article  ADS  Google Scholar 

  • A. Possolo, Measurement, in Proceedings AMCTM 2017 (2018)

    Google Scholar 

  • A. Possolo, C. Elster, Evaluating the uncertainty of input quantities in measurement models. Metrologia 51, 339–353 (2014). https://doi.org/10.1088/0026-1394/51/3/339

    Article  ADS  Google Scholar 

  • D.L. Putnick, M.H. Bornstein, Measurement invariance conventions and reporting: the state of the art and future directions for psychological research. Dev. Rev. 41, 71–90 (2016)

    Article  Google Scholar 

  • C.R. Rao, Linear Statistical Inference and its Applications, 2nd edn. (Wiley, Hoboken, 1973)

    Book  MATH  Google Scholar 

  • G. Rasch, On general laws and the meaning of measurement in psychology, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. IV, (University of California Press, Berkeley, 1961), pp. 321–334. Available free from Project Euclid

    Google Scholar 

  • K.E. Roach, Measurement of health outcomes: Reliability, validity and responsiveness. J. Prosthet Orthot 18, 8 (2006)

    Article  Google Scholar 

  • G.B. Rossi, Measurement and probability – A probabilistic theory of measurement with applications, in Springer Series in Measurement Science and Technology (2014). https://doi.org/10.1007/978-94-017-8825-0

  • Y. Rubner, C. Tomasi, L.J. Guibas, The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)

    Article  MATH  Google Scholar 

  • H.H. Scheiblechner, CML-parameter-estimation in a generalized multifactorial version of Rasch’s probabilistic measurement model with two categories of answers, in Research Bulletin, vol. 4, (Psychologisches Institut det Universität Wien, Vienna, 1971)

    Google Scholar 

  • T.D. Schneider, G.D. Stormo, L. Gold, A. Ehrenfeuch, The information content of binding sites on nucleotide sequences. J. Mol. Biol. 188, 415–431 (1986). www.lecb.ncifcrf.gov/~toms/paper/schneider1986

    Article  Google Scholar 

  • M.M. Schnore, J.T. Partington, Immediate memory for visual patterns: symmetry and amount of information. Psychon. Sci. 8, 421–422 (1967)

    Article  Google Scholar 

  • A.B. Smith, R. Rush, L.J. Fallowfield, G. Velikova, M. Sharpe. Rasch fit statistics and sample size considerations for polytomous data, BMC Medical Research Methodology, 8, 1–11, https://doi.org/10.1186/1147-2288-8-33 (2008)

  • C.J. Soto, O.P. John, S.D. Gosling, J. Potter, The developmental psychometrics of big five self-reports: Aacquiescence, factor structure, coherence, and differentiation from ages 10 to 20, J. Pers. Soc. Psychol., 94, 714–37 (2008)

    Google Scholar 

  • A.J. Stenner, M. Smith, Testing construct theories. Percept. Mot. Skills 55, 415–426 (1982). https://doi.org/10.2466/pms.1982.55.2.415

    Article  Google Scholar 

  • A.J. Stenner, I.I.I. M Smith, D.S. Burdick, Toward a theory of construct definition. J. Educ. Meas. 20(4), 305–316 (1983)

    Article  Google Scholar 

  • A.J. Stenner, W.P. Fisher Jr., M.H. Stone, D.S. Burdick, Causal Rasch models. Front. Psychol. 4(536), 1–14 (2013)

    Google Scholar 

  • E. Svensson, Guidelines to statistical evaluation of data from rating scales and questionnaires. J. Rehabil. Med. 33, 47–48 (2001)

    Article  Google Scholar 

  • L. Tay, A.W. Meade, M. Cao, An overview and practical guide to IRT measurement equivalence analysis. Organ. Res. Methods 18, 3–46 (2015)

    Article  Google Scholar 

  • J.A. Tukey, Chapter 8, Data analysis and behavioural science, in The Collected Works of John A Tukey, Volume III, Philosophy and Principles of Data Analysis: 1949–1964, ed. by L. V. Jones, (University North Carolina, Chapel Hill, 1986)

    Google Scholar 

  • A.M. van der Bles, S. van der Linden, A.L.J. Freeman, J. Mitchell, A.B. Galvao, L. Zaval, D.J. Speigelhalter, Communicating uncertainty about facts, numbers and science. R. Soc. Open Sci. 6, 181870 (2019). https://doi.org/10.1098/rsos.181870

    Article  ADS  Google Scholar 

  • A. Verhoef, G. Huljberts and W. Vaessen, (2015), Introduction of a quality index, based on Generalizablilty theory, as a measure of rellability for univariate- and multivariate sensory descriptive data. Food quality and Preference, 40, 296–303

    Google Scholar 

  • W. Weaver, C. Shannon, The Mathematical Theory of Communication (Univ. of Illinois Press, Champaign, 1963). ISBN 0252725484

    MATH  Google Scholar 

  • Wiki Chi-squared distribution. https://en.wikipedia.org/wiki/Chi-squared_distribution

  • E.B. Wilson, M.M. Hilferty, The distribution of chi-square. Proc. NAS 17, 684–688 (1931)

    Article  MATH  Google Scholar 

  • WINSTEPS® manual, p. 284. http://www.winsteps.com/index.htm

  • S. Wold et al. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58, 109–13 (2001)

    Google Scholar 

  • B.D. Wright, Comparing factor analysis and Rasch measurement. Rasch Meas. Trans. 8(1), 350 (1994). http://www.rasch.org/rmt/rmt81r.htm

  • B.D. Wright, Diagnosing person misfit. Rasch Meas. Trans. 9(2), 430–431 (1995)

    Google Scholar 

  • B.D. Wright, G.N. Masters, Computation of OUTFIT and INFIT statistics. Rasch Meas. Trans. 3(4), 84–85 (1990). http://www.rasch.org/rmt/rmt34e.htm

    Google Scholar 

  • B.D. Wright, M.H. Stone, Best Test Design (MESA Press, Chicago, 1979). ISBN 0-941938-00-X. LC# 79-88489.

    Google Scholar 

  • J. Yang, W. Qiu, A measure of risk and a decision-making model based on expected utility and entropy. Eur. J. Oper. Res. 164, 792–799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Yao, W.L. Lu, B. Xu, C.B. Li, C.P. Lin, D. Waxman, J.F. Feng, The increase of the functional entropy of the human brain with age. Sci. Rep. 3, 2853 (2013). https://doi.org/10.1038/srep02853. www.nature.com/scientificreports

    Article  ADS  Google Scholar 

  • J.V. Zidek, C. van Eeden, Uncertainty, Entropy, Variance and the Effect of Partial Information. Lect. Notes Monogr. Ser. 42, 155–167 (2003). Mathematical Statistics and Applications: Festschrift for Constance van Eeden. https://projecteuclid.org/download/pdf_1/euclid.lnms/1215091936

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pendrill, L. (2019). Measurement Report and Presentation. In: Quality Assured Measurement. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-28695-8_5

Download citation

Publish with us

Policies and ethics