Skip to main content
  • 3594 Accesses

Abstract

The turbulent kinetic energy equation is derived and explained in full detail. The motivation and development of RANS-based models is provided, with the aim of generating a deeper understanding of turbulence phenomena. This includes the detailed descriptions for key k-ε, k-ω, and SST hybrid models. Fundamental RANS terms are explained, such as turbulent kinematic viscosity, production, and decay. RANS models are evaluated and compared, and the best overall turbulence model is suggested. Model applicability, best performance regions, and deficiencies are discussed for zero-, one-, and two-equation RANS models. Compelling reasons for avoiding the standard k-ε are provided. Multiple insights regarding ties associated with the development of k-ε and k-ω models are presented, such as the Taylor scale and eddy dissipation.

An ideal model should introduce the minimum amount of complexity while capturing the essence of the relevant physics.—David Wilcox, 2006

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahzadeh, M., et al. (2017). Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer. International Journal of Heat and Mass Transfer, 115, 1288–1308.

    Article  Google Scholar 

  • Andersson, B., et al. (2012). Computational fluid dynamic for engineers. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modeling, 39, 693–732.

    MathSciNet  MATH  Google Scholar 

  • Bae, Y. Y. (2016). A new formulation of variable turbulent Prandtl number for heat transfer to supercritical fluids. International Journal of Heat and Mass Transfer, 92, 792–806.

    Article  Google Scholar 

  • Bae, Y. Y., Kim, E. S., & Kim, M. (2016). Numerical simulation of supercritical fluids with property-dependent turbulent Prandtl number and variable damping function. International Journal of Heat and Mass Transfer, 101, 488–501.

    Article  Google Scholar 

  • Bae, Y. Y., Kim, E. S., & Kim, M. (2017). Assessment of low-Reynolds number k-ε turbulence models against highly buoyant flows. International Journal of Heat and Mass Transfer, 108, 529–536.

    Article  Google Scholar 

  • Bernard, P. S. (1986). Limitations of the near-wall k-ε turbulence model. AIAA Journal, 24(4), 619–622.

    Article  Google Scholar 

  • Bna, S., et al., Heat transfer numerical simulations with the four parameter k-ω-ktt model for low-Prandtl number liquid metals, XXX UIT Heat Transfer Conference, Bologna, June 2012.

    Google Scholar 

  • Bredberg, J. (2000). On the wall boundary condition for turbulence models. Göteborg: Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology.

    Google Scholar 

  • Bulicek, M., & Malek, J. (2000). Large data analysis for Kolmogorov’s two-equation model of turbulence. Prague: Charles University, Mathematical Institute, Czech Republic.

    Google Scholar 

  • Chou, P. Y. (1940). On an extension of Reynolds’ method of finding apparent stress and the nature of turbulence. Chinese Journal of Physics, 4, 1–33.

    MathSciNet  MATH  Google Scholar 

  • Chou, P. Y. (1945). On velocity correlations and the solutions of the equations of turbulent fluctuation. Quarterly of Applied Mathematics, 3, 38–54.

    Article  MathSciNet  MATH  Google Scholar 

  • Chou, P. Y., & Chou, R. L. (1995). 50 Years of turbulence research in China. Annual Review of Fluid Mechanics, 27, 1–16.

    Article  MathSciNet  Google Scholar 

  • Davydov, B. I. (1961). On the statistical dynamics of an incompressible turbulent fluid. Doklady Akademiya Nauk SSSR, 136, 47–50.

    MathSciNet  Google Scholar 

  • Diaz, D. d. O., & Hinz, D. F. (2015). Performance of eddy-viscosity turbulence models for predicting Swirling pipe-flow: simulations and Laser-Doppler velocimetry, arXiv:1507.04648v2.

    Google Scholar 

  • Dong, J., Wang, X., & Tu, J. (2010). Numerical research about the internal flow of steam-jet vacuum pump evaluation of turbulence models and determination of the shock-mixing layer. Physics Procedia, 32, 614–622.

    Article  Google Scholar 

  • El-Behery, S. M., & Hamed, M. H. (2009). A comparative study of turbulence models performance for turbulent flow in a planar asymmetric diffuser. World Academy of Science, Engineering and Technology, 53, 769–780.

    Google Scholar 

  • Fluent. (2012). “Turbulence”, ANSYS, Lecture 7.

    Google Scholar 

  • Fraczek, D., & Wroblewski, W. (2016). Validation of numerical models for flow simulation in labyrinth seals. Journal of Physics, Conference Series, 760, 012004.

    Article  Google Scholar 

  • Goldberg, U. C., & Batten, P. (2015). A wall-distance-free version of the SST turbulence model. Engineering Applications of Computational Fluid Mechanics, 9(1), 33–40.

    Article  Google Scholar 

  • Gorji, S., et al. (2014). A comparative study of turbulence models in a transient channel flow. Computers & Fluids, 89, 111–123.

    Article  MathSciNet  MATH  Google Scholar 

  • Grunloh, T. P. (2016). A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications, PhD dissertation, University of Michigan.

    Google Scholar 

  • Hamba, F. (2005). Nonlocal analysis of the Reynolds stress in turbulent shear flow. Physics of Fluids, 17, 1–10.

    Article  MATH  Google Scholar 

  • Hamlington, P. E., & Dahm W. J. A. (2009). Reynolds stress closure including nonlocal and nonequilibrium effects in turbulent flows. 39th AIAA fluid dynamics conference, AIAA 2009–4162.

    Google Scholar 

  • Hanjalic, K. (1970). Two-dimensional asymmetric turbulent flow in ducts, PhD dissertation, University of London.

    Google Scholar 

  • Harlow, F. H., & Nakayama, P. I. (1967). Turbulence transport equations. Physics of Fluids, 10(11), 2323.

    Article  MATH  Google Scholar 

  • Harlow, F. H., & Nakayama, P. I. (1968). Transport of turbulence energy decay rate. Los Alamos Scientific Laboratory, LA-3854.

    Google Scholar 

  • He, S., Kim, W. S., & Bae, J. H. (2008). Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube. International Journal of Heat and Mass Transfer, 51, 4659–4675.

    Article  MATH  Google Scholar 

  • Hellsten, A. (1997). Some improvements in Menter's k-ω SST turbulence model, AIAA, AIAA-98-2554.

    Google Scholar 

  • Hellsten, A., & Laine, S. (1997). Extension of the k-ω-SST turbulence model for flows over rough surfaces, AIAA, AIAA-97-3577.

    Google Scholar 

  • Hinze, J. (1987). Turbulence (McGraw-Hill Classic Textbook Reissue Series) (p. 227). New York: McGraw-Hill.

    Google Scholar 

  • Hirota, M., et al. (2017). Vortex stretching in a homogeneous isotropic turbulence. Journal of Physics: Conference Series, 822.

    Google Scholar 

  • Hrenya, C. M., et al. (1995). Comparison of low Reynolds number k-ε turbulence models in predicting fully developed pipe flow. Chemical Engineering Science, 50(12), 1923–1941.

    Article  Google Scholar 

  • Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15, 301–314.

    Article  Google Scholar 

  • Jones, W. P., & Launder, B. E. (1973). The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 16, 1119–1130.

    Google Scholar 

  • Knopp, T., Eisfeld, B., & Calvo, J. B. (2009). A new extension for k–ω turbulence models to account for wall roughness. International Journal of Heat and Fluid Flow, 30(1), 54–65.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1942). Equations of turbulent motion of an incompressible fluid, Izvestiya Akademiya Nauk SSSR, Seria Fizicheska VI, No. 1-2. (Translated by D. B. Spalding.)

    Google Scholar 

  • Lam, C. K. G., & Bremhorst, K. (1981). A modified form of the k-ε model for predicting wall turbulence. Transactions of the ASME, 103, 456–460.

    Google Scholar 

  • Launder, B. E., et al. (1973). Prediction of free shear flows a comparison of the performance of six turbulence models, Free Shear Flows Conference Proceedings, NASA Langley, Vol. 1. (Also as NASA Report SP-321.)

    Google Scholar 

  • Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1, 131–137.

    Article  Google Scholar 

  • Mansour, N. N., Kim, J., & Moin, P. (1988). Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. Journal of Fluid Mechanics, 194, 15.

    Google Scholar 

  • Menter, F. R. (1992). Improved two-equation k-ω turbulence models for aerodynamic flows, NASA technical memorandum 103975, Ames Research Center.

    Google Scholar 

  • Menter, F. R. (1993). Zonal two equation k-ω turbulence models for aerodynamic flows, AIAA 93-2906, 24th fluid dynamics conference.

    Google Scholar 

  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32(8), 1598.

    Article  Google Scholar 

  • Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4, 1–8.

    Google Scholar 

  • Mielke, A., & Naumann, J. (2015). Global-in-time existence of weak solutions to Kolmogorov’s two-equation model of turbulence. Comptes Rendus Mathematique Academie des Sciences, Paris, Series I, 353, 321–326.

    MathSciNet  MATH  Google Scholar 

  • Millionshtchikov, M. (1941). On the theory of homogeneous isotropic turbulence. Doklady Akademii Nauk SSSR, 32(9), 615–618.

    Google Scholar 

  • Myong, H. K., & Kasagi, N. (1988). A new proposal for a k-ε turbulence model and its evaluation: 1st report, development of the model. Transactions of the Japan Society of Mechanical Engineers, Series B, 54(507).

    Google Scholar 

  • Myong, H. K., et al. (1989). Numerical prediction of turbulent pipe flow heat transfer for various Prandtl number fluids with the improved k-e turbulence model. JSME International Journal, Series II, 32(4).

    Google Scholar 

  • Myong, H. K., & Kasagi, N. (1990). A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. JSME International Journal, 33(1), 63–72.

    Google Scholar 

  • NASA1, The Wilcox k-omega turbulence model, Langley Research Center, https://turbmodels.larc.nasa.gov/wilcox.html. Accessed 13 Feb 2018.

  • NASA2, The Menter shear stress transport turbulence model, Langley Research Center, https://turbmodels.larc.nasa.gov/sst.html. Accessed 9 April 2018.

  • Otero R. G. J., Patel A., & Pecnik, R. (2018). A novel approach to accurately model heat transfer to supercritical fluids, The 6th International Symposium - Supercritical CO2 Power Cycles.

    Google Scholar 

  • Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16, 279–281.

    Article  Google Scholar 

  • Prandtl, L. (1945). “Uber ein neues Formelsystem fur die ausgebildete Turbulenz”, (“On a New Formulation for the Fully Developed Turbulence” or “On a New Equation System for Developed Turbulence”), Nacr. Akad. Wiss. Gottingen, Math-Phys. Kl.

    Google Scholar 

  • Rodi, W. (1993). Turbulence models and their application in hydraulics a state-of-the art review (3rd ed.). Rotterdam/Brookfield: Balkema.

    Google Scholar 

  • Rodi, W., & Mansour, N. N. (1993). Low Reynolds number k-ε modelling with the aid of direct simulation data. Journal of Fluid Mechanics, 250, 509–529.

    Article  MATH  Google Scholar 

  • Rodriguez, S. (2011). Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum, PhD dissertation, University of New Mexico.

    Google Scholar 

  • Rotta, J. (1951). Statistische theorie nichthomogener turbulenz. Zeitschrift fur Physik, 129, 547–572.

    Google Scholar 

  • Rotta, J. (1962). Turbulent boundary layers in incompressible flow. Progress in Aeronautical Sciences, 2, 1–219.

    Article  Google Scholar 

  • Saffman, P. G. (1970). A model for inhomogeneous turbulent flow. Proceedings of the Royal Society of London. Series A, 317, 417–433.

    Article  MATH  Google Scholar 

  • Sawko, R. (2012). “Mathematical and computational methods of non-Newtonian, multiphase flows”, PhD dissertation, Cranfield University.

    Google Scholar 

  • Schmitt, F. G. (2007). About Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity. Comptes Rendus Mecanique, 335, 617.

    Article  MATH  Google Scholar 

  • Schobeiri, M., & Abdelfattah, S. (2013). On the reliability of RANS and URANS numerical results for high-pressure turbine simulations: A benchmark experimental and numerical study on performance and interstage flow behavior of high-pressure turbines at design and off-design conditions using two different turbine designs. ASME, Journal of Turbomachinery, 135, 061012.

    Article  Google Scholar 

  • Shih, T. H., & Hsu, A. T. (1992). An improved k-ε model for near wall turbulence, NASA Lewis Research Center, N92-23349.

    Google Scholar 

  • SimScale, Turbulence models K-epsilon. www.simscale.com/docs/content/simulation/model/turbulenceModel/kEpsilon.html. Accessed 18 April 2018.

  • Sondak, D. L. (1992). Wall functions for the k-ε turbulence model in generalized nonorthogonal curvilinear coordinates, PhD dissertation, Iowa State University.

    Google Scholar 

  • Spalart, P. R. (2015). Philosophies and fallacies in turbulence modeling. Progress in Aerospace Sciences, 74, 1–15.

    Article  Google Scholar 

  • Spalding, D. B. (1991). Kolmogorov’s two-equation model of turbulence. Proceedings of the Royal Society of London A, 434, 211–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Speziale, C. G., & Eringen, A. C. (1981). Nonlocal fluid mechanics description of wall turbulence. Computers and Mathematics with Applications, 7, 27–41.

    Google Scholar 

  • Speziale, C. G., Abid, R., & Anderson, E. C. (1992). Critical evaluation of two-equation models for near-wall turbulence. AIAA Journal, 30(2), 324–331.

    Google Scholar 

  • Spiegel, M. R. (1999). Mathematical handbook of formulas and tables (Schaum’s Outlines) (2nd ed.). New York: McGraw-Hill Education.

    Google Scholar 

  • Wilcox, D. C. (1988a). Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 26(11). (1988 k-𝜔 model.).

    Article  MathSciNet  MATH  Google Scholar 

  • Wilcox, D. C. (1988b). Multiscale model for turbulent flows. AIAA Journal, 26(11). (1988 k-𝜔 model.).

    Google Scholar 

  • Wilcox, D. C. (1993a). Turbulence modeling for CFD (1st ed.). La Cañada: DCW Industries, Inc. (1988 k-𝜔 model.).

    Google Scholar 

  • Wilcox, D. C. (1993b). Comparison of two-equation turbulence models for boundary layers with pressure gradient. AIAA Journal, 31, 1414–1421. (1988 k-𝜔 model and a variant; low and high Re models.).

    Article  MATH  Google Scholar 

  • Wilcox, D. C. (1994). Simulation of transition with a two-equation turbulence model. AIAA Journal, 32(2). (1988 k-𝜔 with transition from laminar to turbulent flows.).

    Article  MATH  Google Scholar 

  • Wilcox, D. C. (1998). Turbulence modeling for CFD, 2nd Ed., DCW Industries, Inc., La Cañada printed on 1998 and 2004. (1998 k-𝜔 model.)

    Google Scholar 

  • Wilcox, D. C. (2006). Turbulence modeling for CFD, 3rd Ed., DCW Industries, Inc., La Cãnada, printed on 2006 and 2010. (2006 k-ω model.)

    Google Scholar 

  • Wilcox, D. C. (2007a). An improbable life. La Cañada: DCW Industries, Inc.

    Google Scholar 

  • Wilcox, D. C. (2007b). Formulation of the k-ω turbulence model revisited, 45th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Journal 46(11), 2823–2838. (2006 k-ω model.)

    Google Scholar 

  • Wilcox, D. C. (2012). Basic fluid mechanics (5th ed.). La Cañada: DCW Industries, Inc.

    Google Scholar 

  • Zeierman, S., & Wolfshtein, M. (1986). Turbulent time scale for turbulent-flow calculations. AIAA Journal, 24(10), 1606–1610.

    Article  Google Scholar 

  • Zhao, C. R., et al. (2017). Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids. Nuclear Engineering and Design, 313, 401–413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodriguez, S. (2019). RANS Turbulence Modeling. In: Applied Computational Fluid Dynamics and Turbulence Modeling. Springer, Cham. https://doi.org/10.1007/978-3-030-28691-0_4

Download citation

Publish with us

Policies and ethics