Skip to main content

Nuclear Resonaynce Vibrational Spectroscopy

  • Chapter
  • First Online:
X-Ray Spectroscopy with Synchrotron Radiation

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

We learned in Chap. 9 that Mössbauer spectroscopy and nuclear forward scattering rely on the zero-phonon, recoil-free fraction, as determined by the Lamb-Mössbauer factor—fLM. In the Mössbauer experiment, the intensity is reduced by this factor, so that the observed cross section is reduced from the total cross section according to σ(0) ~ (π/2) σN fLM. However, there is a “sum rule” that states that the integrated cross section for a nuclear transition remains the same [478]. So, where does this missing intensity go?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “New materials for high-energy-resolution X-ray optics”, Yavas, H.; Sutter, J. P.; Gog, T.; Wille, H. C.; Baron, A. Q. R. MRS Bull., 2017, 42, 424–429

    Google Scholar 

  2. “Fast X-ray detector system with simultaneous measurement of timing and energy for a single photon”, Masuda, T.; Okubo, S.; Hara, H.; Hiraki, T.; Kitao, S.; Miyamoto, Y.; Okai, K.; Ozaki, R.; Sasao, N.; Seto, M.; Uetake, S.; Yamaguchi, A.; Yoda, Y.; Yoshimi, A.; Yoshimura, K. Rev. Sci. Inst., 2017, 88

    Google Scholar 

  3. Röhlsberger, R. Nuclear Condensed Matter Physics with Synchrotron Radiation - Basic Principles, Methodology and Applications; Springer-Verlag: Berlin Heidelberg, 2004

    Google Scholar 

  4. “Nuclear resonant spectroscopy”, Sturhahn, W. J. Phys. Cond. Matt., 2004, 16, S497–S530

    Google Scholar 

  5. “Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region”, Wicks, J. K.; Jackson, J. M.; Sturhahn, W. Geophys. Res. Lett., 2010, 37, L15304

    Google Scholar 

  6. “Mössbauer sum rules for use with synchrotron sources”, Lipkin, H. J. Phys. Rev. B, 1995, 52, 10073–10079

    Google Scholar 

  7. “CONUSS and PHOENIX: evaluation of nuclear resonant scattering data”, Sturhahn, W. Hyp. Int., 2000, 125, 149–172

    Google Scholar 

  8. “A combined NRVS and DFT study of Fe(IV) = O model complexes: a diagnostic method for the elucidation of non-heme iron enzyme intermediates”, Bell III, C. B.; Wong, S. D.; Xiao, Y.; Klinker, E. J.; Tenderholt, A. L.; Smith, M. C.; Rohde, J. U.; Que. Jr., L.; Cramer, S. P.; Solomon, E. I. Angew. Chem. Int. Ed., 2008, 47, 9071–9074

    Google Scholar 

  9. “Nuclear resonance vibrational spectroscopy of a protein active-site mimic”, Sage, J. T.; Paxson, C.; Wyllie, G. R. A.; Sturhahn, W.; Durbin, S. M.; Champion, P. M.; Alp, E. E.; Scheidt, W. R. J. Phys.: Condens. Matter, 2001, 13, 7707–7722

    Google Scholar 

  10. “Quantitative Vibrational Dynamics of Iron in Carbonyl Porphyrins”, Leu, B. M.; Silvernail, N. J.; Zgierski, M. Z.; Wyllie, G. R. A.; Ellison, M. K.; Scheidt, W. R.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Sage, J. T. Biophys. J., 2007, 92, 3764–3783

    Google Scholar 

  11. “Nuclear resonant scattering from the subnanosecond lifetime excited state of 201Hg”, Ishikawa, D.; Baron, A. Q. R.; Ishikawa, T. Phys. Rev. B, 2005, 72, 140301

    Google Scholar 

  12. “Direct determination of the phonon density of states in beta-Sn”, Barla, A.; Rüffer, R.; Chumakov, A. I.; Metge, J.; Plessel, J.; Abd-Elmeguid, M. M. Phys. Rev. B, 2000, 61, R14881-R14884

    Google Scholar 

  13. “Phonon Density of States of Metallic Sn at High Pressure”, Giefers, H.; Tanis, E. A.; Rudin, S. P.; Greeff, C.; Ke, X.; Chen, C.; Nicol, M. F.; Pravica, M.; Pravica, W.; Zhao, J.; Alatas, A.; Lerche, M.; Sturhahn, W.; Alp, E. Phys. Rev. Lett., 2007, 98, 245502

    Google Scholar 

  14. “Partial phonon density of states of dysprosium and its compounds measured using inelastic nuclear resonance scattering”, Brown, D. E.; Toellner, T. S.; Sturhahn, W.; Alp, E. E.; Hu, M.; Kruk, R.; Rogacki, K.; Canfield, P. C. Hyp. Int., 2004, 153, 17–24

    Google Scholar 

  15. “Vibrational dynamics of biological molecules: Multi-quantum contributions”, Leu, B. M.; Zgierski, M. Z.; Wyllie, G. R. A.; Mary K. Ellison; Scheidt, W. R.; Sturhahn, W.; Alp, E. E.; Durbin, S. M.; Sage, J. T. J. Phys. Chem. Solids, 2005, 66 2250–2256

    Google Scholar 

  16. “Probing Vibrational Anisotropy with Nuclear Resonance Vibrational Spectroscopy”, Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R. Angew. Chem. Int. Ed., 2010, 49, 4400–4404

    Google Scholar 

  17. “Measuring velocity of sound with nuclear resonant inelastic X-ray scattering”, Hu, M. Y.; Sturhahn, W.; Toellner, T. S.; Mannheim, P. D.; Brown, D. E.; Zhao, J. Y.; Alp, E. E. Phys. Rev. B, 2003, 67, 094304

    Google Scholar 

  18. “Moments in nuclear resonant inelastic X-ray scattering and their applications”, Hu, M. Y.; Toellner, T. S.; Dauphas, N.; Alp, E. E.; Zhao, J. Y. Phys. Rev. B, 2013, 87

    Google Scholar 

  19. “Nuclear resonant inelastic absorption of synchrotron radiation in an anisotropic single crystal”, Kohn, V. G.; Chumakov, A. I.; Ruffer, R. Phys. Rev. B, 1998, 58, 8437–8444

    Google Scholar 

  20. “Bulk Modulus of a Protein Active-Site Mimic”, Leu, B. M.; Sage, J. T.; Silvernail, N. J.; Scheidt, W. R.; Alatas, A.; Alp, E. E.; Sturhahn, W. J. Phys. Chem. B, 2011, 115, 4469–4473

    Google Scholar 

  21. “Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa”, Chen, B.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Zhao, J.; Wicks, J. K.; Murphy, C. A. J. Geophys. Res., 2012, 117, B08208

    Google Scholar 

  22. “Lattice Dynamics in Bi2Te3 and Sb2Te3: Te and Sb density of phonon states”, Bessas, D.; Sergueev, I.; Wille, H. C.; Persson, J.; Ebling, D.; Hermann, R. P. Phys. Rev. B, 2012, 86, 224301

    Google Scholar 

  23. “Lattice dynamics in the thermoelectric Zintl compound Yb14MnSb11”, Möchel, A.; Sergueev, I.; Wille, H. C.; Juranyi, F.; Schober, H.; Schweika, W.; Brown, S. R.; Kauzlerich, S. M.; Hermann, R. P. Phys. Rev. B, 2011, 84, 184303

    Google Scholar 

  24. “DOS: Evaluation of phonon density of states from nuclear resonant inelastic absorption”, Kohn, V. G.; Chumakov, A. I. Hyp. Interact., 2000, 125, 205–221

    Google Scholar 

  25. “Normal Mode Analysis of [FeCl4] and [Fe2S2Cl4]2− via Vibrational Mössbauer, Resonance Raman, and FT-IR Spectroscopy”, Smith, M. C.; Xiao, Y.; Wang, H.; George, S. J.; Coucovanis, D.; Koutmos, M.; Sturhahn, W.; Alp, E. E.; Zhao, J.; Cramer, S. P. Inorg. Chem., 2005, 44, 5562–5570

    Google Scholar 

  26. “Direct observation of an iron bound terminal hydride 0intermediate in [FeFe] hydrogenase”, Reijerse, E. J.; Pham, C. C.; Pelmenschikov, V.; Gilbert-Wilson, R.; Adamska-Venkatesh, A.; Siebel, J. F.; Gee, L. B.; Yoda, Y.; Tamasaku, K.; Lubitz, W.; Rauchfuss, T. B.; Cramer, S. P. J. Am. Chem. Soc., 2017, 139, 4306–4309

    Google Scholar 

  27. “Elasticity and Constitution of the Earth Interior”, Birch, F. J. Geophys. Res., 1952, 57, 227–286

    Google Scholar 

  28. “Atomic dynamics of low-lying rare-earth guest modes in heavy fermion filled skutterudites ROs4Sb12 (R = light rare-earth)”, Tsutsui, S.; Uchiyama, H.; Sutter, J. P.; Baron, A. Q. R.; Mizumaki, M.; Kawamura, N.; Uruga, T.; Sugawara, H.; Yamaura, J.; Ochiai, A.; Hasegawa, T.; Ogita, N.; Udagawa, M.; Sato, H. Phys. Rev. B, 2012, 86, 195115

    Google Scholar 

  29. “Anharmonic motions of Kr in the clathrate hydrate”, Tse, J. S.; Klug, D. D.; Zhao, J. Y.; Sturhahn, W.; Alp, E. E.; Baumert, J.; Gutt, C.; Johnson, M. R.; Press, W. Nature Mat., 2005, 4, 917–921

    Google Scholar 

  30. 129Xe nuclear resonance scattering on solid Xe and 129Xe clathrate hydrate”, Klobes, B.; Desmedt, A.; Sergueev, I.; Schmalzl, K.; Hermann, R. P. EPL, 2013, 103, 36001

    Google Scholar 

  31. “Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution”, Shenoy, G. K.; Rohlsberger, R. Hyp. Int., 2008, 182, 157–172

    Google Scholar 

  32. “Scientific Opportunities with an X-ray Free-Electron Laser Oscillator”, Adams, B.; Aeppli, G.; Baron, A. Q. R.; Bucksbaum, P.; Chumakov, A.; Corder, C.; Cramer, S. P.; Ding, Y.; Evers, J.; Frisch, J.; Fuchs, M.; Grübel, G.; Harris, S.; Hastings, J.; Heyl, C.; Holberg, L.; Huang, Z.; Ishikawa, T.; Jones, R. J.; Kaldun, A.; Kim, K.-J.; Kolodziej, T.; Krzywinski, J.; Li, Z.; Liao, W.-T.; Lindberg, R.; Madsen, A.; Maxwell, T.; Monaco, G.; Nelson, K.; Palffy, A.; Porat, G.; Qin, W.; Raubenheimer, T.; Reis, D. A.; Röhlsberger, R.; Santra, R.; Schoenlein, R.; Schünemann, V.; Shpyrko, O.; Shvydko, Y.; Shwartz, S.; Singer, A.; Sinha, S.; Sutton, M.; Tamasaku, K.; Wille, H.-C.; Yabashi, M.; Ye, J.; Zhu, D. J. Syn. Rad., 2019, https://arxiv.org/abs/1903.09317, accepted - in press

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cramer, S.P. (2020). Nuclear Resonaynce Vibrational Spectroscopy. In: X-Ray Spectroscopy with Synchrotron Radiation. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-28551-7_10

Download citation

Publish with us

Policies and ethics