Skip to main content

Biosynthesis and Degradation of Trehalose and Its Potential to Control Plant Growth, Development, and (A)biotic Stress Tolerance

  • Chapter
  • First Online:
Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants

Abstract

Trehalose is a nonreducing disaccharide that consists of two glucose monomers bound by an α,α-1,1-glucoside bond. Trehalose is present in a wide range of organisms such as bacteria, fungi, invertebrates, and plants. It has been demonstrated that trehalose stabilizes proteins and lipid membranes under various stress conditions, including heat stress, carbon starvation, osmotic or oxidative stress, etc. In most plants, trehalose levels are negligible, although there are many genes linked to trehalose biosynthesis. For instance, in Arabidopsis thaliana, there are 11 orthologues of the microbial trehalose-6-phosphate (T6P) synthase (TPS) family, divided in 2 classes, and there are 10 T6P phosphatases (TPPs). TPS converts UDP-glucose and glucose-6-phosphate into T6P with the help of TPS enzymes, and this T6P is hydrolyzed by TPPs to produce trehalose. In general, there is much less and often only one (as in A. thaliana) enzyme trehalase (TRE) that hydrolyzes trehalose into two glucose monomers. It has been shown that trehalose metabolism is critical for normal plant growth and development. Trehalose feeding causes growth arrest as stunted root growth and undeveloped primary leaves of seedlings. Modification of T6P levels by expression of either microbial TPS or TPP enzymes also results in aberrant growth phenotypes, which indicates that the level of T6P is very important for correct plant development. T6P levels also provide plants with information regarding the sugar status of the plants. Overexpression of both TPS and TPP or overexpression of active plant TPS enzymes results in small increases in trehalose levels and in an increased stress tolerance. However, the latter phenotype cannot be explained by the stress-protecting characteristics of trehalose as the concentrations are too low. Therefore, the hypothesis is that small changes in trehalose and/or T6P levels affect many plant characteristics, including growth, development, and stress tolerance. All these aspects are discussed in this chapter with a focus on what is known in A. thaliana but also including the recent findings in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali Q, Ashraf M (2011) Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ Exp Bot 71:249–259

    Article  CAS  Google Scholar 

  • Ali Q, Ashraf M, Anwar F, Al-Qurainy F (2012) Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. J Am Oil Chem Soc 89:1485–1493

    CAS  Google Scholar 

  • Anselmino O, Gilg E (1913) Trehalose in Selaginella. Bericth der Deutschen pharmazeutischen Gesellschaft 23:326–327

    CAS  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid and stress signaling. Plant Physiol 136:3649–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P (2010) The Cytophaga hutchinsonii ChTPSP: first characterized Bifunctional TPS–TPP protein as putative ancestor of all eukaryotic Trehalose biosynthesis proteins. Mol Biol Evol 27(2):359–269

    Article  CAS  PubMed  Google Scholar 

  • Baena-González E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–942

    Article  PubMed  CAS  Google Scholar 

  • Barraza A, Contreras-Cubas C, Estrada-Navarrete G, Reyes JL, Juárez-Verdayes MA, Avonce N, Quinto C, Díaz-Camino C, Sanchez F (2016) The class II Trehalose 6-phosphate synthase gene PvTPS9 modulates Trehalose metabolism in Phaseolus vulgaris nodules. Front Plant Sci 7:1589

    Article  PubMed  PubMed Central  Google Scholar 

  • Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Lloyd W, Sumner LW, Stacey G (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153:1808–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodmann D, Schuller A, Muller JL, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant-Microbe Interact 15(7):693–700

    Article  CAS  PubMed  Google Scholar 

  • Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiol 146:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YH, Hong JW, Kim EC, Yoo SD (2012) Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiol 158:1955–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW (2010) Comparisons of early transcriptome responses to low-oxygen environments in three dicotyledonous plant species. Plant Signal Behav 5(8):1006–1009

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    Article  CAS  Google Scholar 

  • Couee I, Sulmon C, Gouesbet G, El-Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • De Smet KAL, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208

    Article  PubMed  Google Scholar 

  • Delorge I, Figueroa CM, Feil R, Lunn JE, Van Dijck P (2015) Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. Biochem J 466(2):283–290

    Article  CAS  PubMed  Google Scholar 

  • Djonović S, Urbach JM, Drenkard E et al (2013) Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 9:e1003217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domínguez-Ferreras A, Soto MJ, Pérez-Arnedo R, Olivares J, Sanjuán J (2009) Importance of trehalose biosynthesis for Sinorhizobium meliloti osmotolerance and nodulation of alfalfa roots. J Bacteriol 191:7490–7499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drennan PM, Smith MT, Goldsworth D, Van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142:493–496

    Article  CAS  Google Scholar 

  • Eastmond PI, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  CAS  PubMed  Google Scholar 

  • El-Bashiti T, Hamamci H, Oktem HA, Yucel M (2005) Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci 169:47–54

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17–27

    Article  Google Scholar 

  • Farias-Rodriguez R, Mellor RB, Arias C, Pena-Cabriales JJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress. Physiol Plant 102:353–359

    Article  CAS  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  CAS  PubMed  Google Scholar 

  • Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn JE, Clément C (2012) Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta 236:355–369

    Article  CAS  PubMed  Google Scholar 

  • Frison M, Parrou JL, Guillaumot D, Masquelier D, François J, Chaumont F, Batoko H (2007) The Arabidopsis thaliana trehalase is a plasma membrane-bound enzyme with extracellular activity. FEBS Lett 581:4010–4016

    Article  CAS  PubMed  Google Scholar 

  • Garcia AB, Engler JD, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glinski M, Weckwerth W (2005) Differential multisite phosphorylation of the trehalose-6-phosphate synthase gene family in Arabidopsis thaliana - a mass spectrometry-based process for multiparallel peptide library phosphorylation analysis. Mol Cell Proteomics 4:1614–1625

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4(8):315–319

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RWHH, de Graaf PTHM, Poels J, van Dun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010) AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64:1–13

    PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravot A, Grillet L, Wagner G, Jubault M, Lariagon C, Baron C, De-leu C, Delourme R, Bouchereau A, Manzanares-Dauleux MJ (2011) Genetic and physiological analysis of the relationship between partial resistance to clubroot and tolerance to trehalose in Arabidopsis thaliana. New Phytol 191:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Harthill JE, Meek SE, Morrice N, Peggie MW, Borch J, Wong BH, Mackintosh C (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J 47:211–223

    Article  CAS  PubMed  Google Scholar 

  • Henry C, Bledsoe SW, Griffiths CA, Kollman A, Paul MJ, Sakr S, Lagrimini LM (2015) Differential role for trehalose metabolism in salt-stressed maize. Plant Physiol 169:1072–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirt H, Shinozaki K (eds) (2004) Plant responses to abiotic stress. Springer, Berlin

    Google Scholar 

  • Hodge S, Ward JL, Beale MH, Bennett M, Mansfield JW, Powell G (2013) Aphid-induced accumulation of trehalose in Arabidopsis thaliana is systemic and dependent upon aphid density. Planta 237:1057–1064

    Article  CAS  PubMed  Google Scholar 

  • Hofmann J, Ashry E, Ael N, Anwar S, Erban A, Kopka J, Grundler F (2010) Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant J 62:1058–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. Plant Biol 50:1223–1229

    CAS  Google Scholar 

  • Iturriaga G, Gaff DF, Zentella R (2000) New desiccation-tolerant plants, including a grass, in the central high-lands of Mexico, accumulate trehalose. Aust J Bot 48:153–158

    Article  Google Scholar 

  • Iturriaga G, Cushman MAF, Cushman JC (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci 170:1173–1184

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    Article  CAS  PubMed  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci U S A 102(31):11118–11123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondrák M, Marincs F, Antal F, Juhász Z, Bánfalvi Z (2012) Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol 12:e74

    Article  CAS  Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-re- lated trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339

    Article  CAS  PubMed  Google Scholar 

  • Leyman B, Van Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513

    Article  CAS  PubMed  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Liu F, VanToai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López MF, Männer P, Willmann A, Hampp R, Nehls U (2007) Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. New Phytol 174:389–398

    Article  PubMed  CAS  Google Scholar 

  • López M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C (2008a) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650

    Article  PubMed  CAS  Google Scholar 

  • López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008b) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582

    Article  PubMed  CAS  Google Scholar 

  • López M, Tejera NA, Lluch C (2009) Validamycin A improves the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules. J Plant Physiol 166:1218–1222

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende R, Osuna D, Scheible W-R, Carillo P, Hajirezaei M-R, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolisms in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384

    Article  CAS  Google Scholar 

  • Martin F, Boiffin V, Pfeffer PE (1998) Carbohydrate and amino acid metabolism in the Eucalyptus globulus–Pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol 118:627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181

    Article  CAS  PubMed  Google Scholar 

  • Muchembled J (2006) Changes in lipid composition of Blumeria graminis f. sp. tritici conidia produced on wheat leaves treated with heptanoyl salicylic acid. Phytochemistry 67:1104–1109

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Staehelin C, Mellor RB, Boller T, Wiemken A (1992) Partial purification and characterization of trehalase from soybean nodules. Plant Physiol 140:8–13

    Article  Google Scholar 

  • Müller J, Boller T, Wiemken A (1995) Effects of validamycin A, a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and root-nodules of soybean and cowpea. Planta 197:362–368

    Google Scholar 

  • Müller J, Boller T, Wiemken A (1998) Trehalose affects sucrose synthase and invertase activities in soybean (Glycine max [L.] Merr.) roots. Plant Physiol 153:255–257

    Article  Google Scholar 

  • Müller J, Aeschbacher RA, Wingler A, Boller T, Wiemken A (2001a) Trehalose and trehalase in Arabidopsis. Plant Physiol 125:1086–1093

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller J, Boller T, Wiemken A (2001b) Trehalose becomes the most abundant non-structural carbohydrate during senescence of soybean nodules. J Exp Bot 52:943–947

    Article  PubMed  Google Scholar 

  • O’Hara LE, Paul MJ, Wingler A (2013) How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant 6(2):261–274

    Article  PubMed  CAS  Google Scholar 

  • Osuna D, Usadel B, Morcuende R, Gibon Y, Blasing OE (2007) Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant J 49:463–491

    Article  CAS  PubMed  Google Scholar 

  • Pampurova S, Van Dijck P (2014) The desiccation tolerant secrets of Selaginella lepidophylla: what we have learned so far? Plant Physiol Biochem 80:285–290

    Article  CAS  PubMed  Google Scholar 

  • Pampurova S, Verschooten K, Avonce N, Van Dijck P (2014) Functional screening of a cDNA library from the desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies trehalose biosynthesis genes of plant and microbial origin. J Plant Res 127:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrou JL, Jules M, Beltran G, François J (2005) Acid trehalase in yeasts and filamentous fungi: localization, regulation and physiological function. FEMS Yeast Res 5:503–511

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S, Andralojc J, Krause KP, Goddijn O, Paul MJ (2004) Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotechnol J 2:71–82

    Article  CAS  PubMed  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  CAS  Google Scholar 

  • Qu Q, Lee SJ, Boss W (2004) TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archeon Thermococcus litoralis. J Biol Chem 279:47890–47897

    Article  CAS  PubMed  Google Scholar 

  • Ramon M, Rolland F, Thevelein JM, Van Dijck P, Leyman B (2007) ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Mol Biol 63:195–206

    Article  CAS  PubMed  Google Scholar 

  • Ramon M, De Smet I, Vandesteene L, Naudts M, Leyman B, Van Dijck P, Rolland F, Beeckman T, Thevelein JM (2009) Extensive expression regulation and lack of heterologous enzymatic activity of the class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ 32:1015–1032

    Article  CAS  PubMed  Google Scholar 

  • Renard-Merlier Dea (2007) Iodus 40, salicylic acid, heptanoyl salicylic acid and trehalose exhibit different efficacies and defence targets during a wheat/powdery mildew interaction. Phytochemistry 68:1156–1164

    Article  CAS  Google Scholar 

  • Richards A, Krakowka S, Dexter L, Schmid H, Wolterbeek A, Waalkens-Berendsen D, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T (1999) Source–sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Romero C, Bellés JM, Vayá JL, Serrano R, Culiáñez-Macià FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Article  CAS  PubMed  Google Scholar 

  • Romero C, Cruz Cutanda M, Cortina C, Primo J, Culiáñez-Macià FA (2002) Plant environmental stress response by trehalose biosynthesis. Curr Top Plant Biol 3:73–88

    CAS  Google Scholar 

  • Salazar JR, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    Article  CAS  Google Scholar 

  • Salminen SO, Streeter JG (1986) Enzymes of α, α-trehalose metabolism in soybean nodules. Plant Physiol 81:538–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230

    Article  CAS  PubMed  Google Scholar 

  • Schluepmann H, Pellny T, Van Dijken A, Smeekens S, Paul M (2003) Trehalose-6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100:6849–6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to Trehalose-6-phosphate accumulation. Plant Physiol 135:879–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluepmann H, Berke L, Sanchez-Perez GF (2012) Metabolism control over growth: a case for trehalose-6-phosphate in plants. J Exp Bot 63:3379–3390

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Bemar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274:1192–1201

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Louis J, Ayre BG, Reese JC, Shah J (2011) TREHALOSE PHOSPHATE SYNTHASE 11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Plant J 67:94–104

    Article  CAS  PubMed  Google Scholar 

  • Stiller I, Dulai S, Kondrák M, Tarnai R, Szabo L, Toldi O, Bánfalvi Z (2008) Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta 227:299–308

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Wong A, Ramiréz M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernandéz G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–966

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, Millar AH (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:1185–1191

    Article  CAS  Google Scholar 

  • Thiel J, Rolletschek H, Friedel S, Lunn JE, Nguyen TH, Feil R, Tschiersch H, Muller M, Borisjuk L (2011) Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana. BMC Plant Biol 11:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevisol ETV, Panek AD, De Mesquita JF, Eleutherio ECA (2014) Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochim Biophys Acta 1840:1646–1650

    Article  CAS  PubMed  Google Scholar 

  • Van Dijck P, Mascorro-Gallardo JO, De Bus M, Royackers K, Iturriagan G, Thevelein JM (2002) Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. Biochem J 366:63–71

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dijken AJH, Schluepmann H, Smeekens SCM (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growthand transition to flowering. Plant Physiol 135:969–977

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Houtte H, Vandesteene L, López-Galvis L, Lemmens L, Kissel E, Carpentier S et al (2013) Overexpression of the Trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in Abscisic acid-induced stomatal closure. Plant Physiol 161:1158–1171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F (2010) A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Mol Plant 3:406–419

    Article  CAS  PubMed  Google Scholar 

  • Vandesteene L, López-Galvis L, Vanneste K, Feil R, Maere S, Lammens W, Rolland F, Lunn JE, Avonce N, Beeckman T, Van Dijck P (2012) Expansive evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE gene family in Arabidopsis. Plant Physiol 160:884–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vauclare P, Bligny R, Gout E, De Meuron V, Widmer F (2010) Metabolic and structural rearrangement during dark-induced autophagy in soybean (Glycine max L.) nodules: an electron microscopy and 31P and 13C nuclear magnetic resonance study. Planta 231:1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Veluthambi K, Mahadevan S, Maheshwari R (1981) Trehalose toxicity in Cuscuta reflexa: correlation with low trehalase activity. Plant Physiol 68:1369–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veluthambi K, Mahadevan S, Maheshwari R (1982a) Trehalose toxicity in Cuscuta reflexa: cell wall synthesis is inhibited upon trehalose feeding. Plant Physiol 70:686–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veluthambi K, Mahadevan S, Maheshwari R (1982b) Trehalose toxicity in Cuscuta reflexa: sucrose content decreases in shoot tips upon trehalose feeding. Plant Physiol 69:1247–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wannet WJB, Op den Camp HJM, Wisselink HW, van der Drift C, Van Griensven LJLD, Vogels GD (1998) Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochim Biophys Acta 1425:177–188

    Article  CAS  PubMed  Google Scholar 

  • Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher RA (2000) Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol 124:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H (2012) Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol 158:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang B, Li H, Li W, Deng XW, Wang X (2011) Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol 76:507–522

    Article  CAS  PubMed  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH (2006) Expression of the Grifola frondosa Trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). J Integr Plant Biol 48(4):453–459

    Article  CAS  Google Scholar 

  • Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Zhang W, Stanley BA, Assmann SA (2008) Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Van Dijck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phan, L.C.H.B.T., Van Dijck, P. (2019). Biosynthesis and Degradation of Trehalose and Its Potential to Control Plant Growth, Development, and (A)biotic Stress Tolerance. In: Hossain, M., Kumar, V., Burritt, D., Fujita, M., Mäkelä, P. (eds) Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-27423-8_8

Download citation

Publish with us

Policies and ethics