Skip to main content

k-Medoids Clustering Based on Kernel Density Estimation and Jensen-Shannon Divergence

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11676))

  • 664 Accesses

Abstract

Several conventional clustering methods consider the squared \(L_2\)-norm which is calculated from objects coordinates. To extract meaningful clusters from a set of massive objects, it is required to calculate the dissimilarity from both objects coordinates and other features such as objects distribution. In this paper, JS-divergence based k-medoids (JSKMdd) is proposed as a novel method for clustering network data. In the proposed method, the dissimilarity that is based on objects coordinates and an object distribution is considered. The effectiveness of the proposed method is verified through numerical experiments with artificial datasets which consist non-linear clusters. The influence of the parameter in the proposed method is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78737-2

    Book  MATH  Google Scholar 

  2. Jain, A.K.: Data clustering: 50 years beyond \(K\)-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  3. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. Neural networks 13(3), 780–784 (2002)

    Article  Google Scholar 

  4. Endo Y., Haruyama H., Okubo T., On some hierarchical clustering algorithms using kernel functions. In: Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE2004), pp. 1513–1518 (2004)

    Google Scholar 

  5. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of IEEE Conference on Decision and Control, pp. 761–766 (1979)

    Google Scholar 

  6. Davé, R.N., Krishnapuram, R.: Robust clustering methods: a unified view. IEEE Trans. Fuzzy Syst. 5(2), 270–293 (1997)

    Article  Google Scholar 

  7. Hamasuna, Y., Endo, Y.: On semi-supervised fuzzy \(c\)-means clustering for data with clusterwise tolerance by opposite criteria. Soft Comput. 17(1), 71–81 (2013)

    Article  Google Scholar 

  8. Endo, Y., Hamasuna, Y., Hirano, T., Kinoshita, N.: Even-sized clustering based on optimization and its variants. J. Adv. Comput. Intell. Intell. Inform. (JACIII) 22(1), 62–69 (2018)

    Article  Google Scholar 

  9. Breunig, M.M., Kriegel, H.-S., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of data (SIGMOD 2000), pp. 93–104 (2000)

    Google Scholar 

  10. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  Google Scholar 

  11. Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14, 153–158 (1969)

    Article  MathSciNet  Google Scholar 

  12. Fuglede, B., Topsoe, F.: Jensen-Shannon divergence and Hilbert space embedding. In: Proceedings of the International Symposium on Information Theory (ISIT 2004) (2004)

    Google Scholar 

  13. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  14. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  16. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. P10008 (2008)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant Numbers JP19K12146. This work was also partly supported by Telecommunications Advancement Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Hamasuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamasuna, Y., Kingetsu, Y., Nakano, S. (2019). k-Medoids Clustering Based on Kernel Density Estimation and Jensen-Shannon Divergence. In: Torra, V., Narukawa, Y., Pasi, G., Viviani, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2019. Lecture Notes in Computer Science(), vol 11676. Springer, Cham. https://doi.org/10.1007/978-3-030-26773-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26773-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26772-8

  • Online ISBN: 978-3-030-26773-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics