Skip to main content

Expected Unexpecteds: Cambrian Explosions in Lamarckian Systems

  • Chapter
  • First Online:
Cognitive Dynamics on Clausewitz Landscapes
  • 175 Accesses

Abstract

In this context, by mid-2014, the fundamentalist group ISIL had, with surprisingly little effort, come to control a vast sector of Iraq, including the second-largest city, Mosul. In addition, another eight or so significant anti-government militias had emerged and continued to operate throughout the country.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinote, S.C. 2013. Cutting off the head of the snake: Applying and assessing leadership attack in military conflict. Ph.D. thesis, School of Advanced Air and Space Studies, Air University, Maxwell Air Force Base, Alabama.

    Google Scholar 

  2. Wallace, R. 2013. A new formal perspective on ‘Cambrian explosions’. Comptes Rendus Biologies 337: 1–5.

    Article  Google Scholar 

  3. Erwin, D., and J. Valentine. 2013. The cambrian explosion: The construction of animal biodiversity. Greenwood Village: Roberts and Company.

    Google Scholar 

  4. Gould, S. 2002. The structure of evolutionary theory. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  5. Marshall, C. 2006. Explaining the cambrian ‘explosion’ of animals. Annual Reviews of Earth and Planetary Science 34: 355–384.

    Article  Google Scholar 

  6. Whittington, H. 1985. The burgess shale. New Haven, CT: Yale University Press.

    Google Scholar 

  7. Wallace, R., and R.G. Wallace. 2015. Blowback: New formal perspectives on agriculturally driven pathogen evolution and spread. Epidemiology and infection 143 (SE10): 2068–2080.

    Article  Google Scholar 

  8. Wallace, R. 2012. Metabolic constraints on the evolution of genetic codes: Did multiple ‘preaerobic’ ecosystem transitions entrain richer dialects via serial endosymbiosis? Transactions on Computational Systems Biology XIV, LNBI 7625: 204–232.

    Article  Google Scholar 

  9. Canfield, D., M. Rosing, and C. Bjerrum. 2006. Early anaerobic metabolisms. Philosophical Transactions of the Royal Society B 361: 1819–1836.

    Article  Google Scholar 

  10. Ewens, W. 2004. Mathematical population genetics. Berlin: Springer.

    Book  Google Scholar 

  11. Hartl, D., and A. Clark. 2006. Principles of population genetics. Sunderland, MA: Sinaur Associates.

    Google Scholar 

  12. Taylor, P., and L. Jonker. 1978. Evolutionary stable strategies and game dynamics. Mathematical Biosciences 40: 145–156.

    Article  Google Scholar 

  13. Roca, C., J. Suesta, and A. Sanchez. 2009. Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics. Physics of Life Reviews 6: 208–249.

    Article  Google Scholar 

  14. Wallace, R. 2011. A formal approach to evolution as self-referential language. BioSystems 106: 36–44.

    Article  Google Scholar 

  15. Wallace, R. 2012. Consciousness, crosstalk, and the mereological fallacy: An evolutionary perspective. Physics of Life Reviews 9: 426–453.

    Article  Google Scholar 

  16. Wallace, R. 2013. A new formal approach to evolutionary processes in socioeconomic systems. Journal of Evolutionary Economics 23: 1–15.

    Article  Google Scholar 

  17. Wallace, R. 2013. Cognition and biology: Perspectives from information theory. Cognitive Processing 15: 1–12.

    Article  Google Scholar 

  18. Champagnat, N., R. Ferriere, and S. Meleard. 2006. Unifying evolutionary dynamics: From individual stochastic process to macroscopic models. Theoretical Population Biology 69: 297–321.

    Article  Google Scholar 

  19. Wallace, R., and D. Wallace. 2008. Punctuated equilibrium in statistical models of generalized coevolutionary resilience: How sudden ecosystem transitions can entrain both phenotype expression and Darwinian selection. Transactions on Computational Systems Biology IX, LNBI 5121: 23–85.

    Google Scholar 

  20. Cover, T., and J. Thomas. 2006. Elements of information theory, 2nd ed. New York: Wiley.

    Google Scholar 

  21. de Groot, S., and P. Mazur. 1984. Non-equilibrium thermodynamics. New York: Dover.

    Google Scholar 

  22. Protter, P. 1990. Stochastic integration and differential equations. Berlin: Springer.

    Book  Google Scholar 

  23. Khasminskii, R. 2012. Stochastic stability of differential equations, 2nd ed. Berlin: Springer.

    Book  Google Scholar 

  24. Dembo, A., and O. Zeitouni. 1998. Large deviations: Techniques and applications. Berlin: Springer.

    Book  Google Scholar 

  25. Kitano, H. 2004. Biological robustness. Nature Genetics 5: 826–837.

    Article  Google Scholar 

  26. Khinchin, A. 1957. Mathematical foundations of information theory. New York: Dover Publications.

    Google Scholar 

  27. Horsthemeke, W., and R. Lefever. 2006. Noise-induced Transitions. In Theory and applications in physics, chemistry, and biology, vol. 15. Berlin: Springer.

    Google Scholar 

  28. Van den Broeck, C., J. Parrondo, and R. Toral. 1994. Noise-induced nonequilibrium phase transition. Physical Review Letters 73: 3395–3398.

    Article  Google Scholar 

  29. Van den Broeck, C., J. Parrondo, R. Toral, and R. Kawai. 1997. Nonequilibrium phase transitions induced by multiplicative noise. Physical Review E 55: 4084–4094.

    Article  Google Scholar 

  30. Pettini, M. 2007. Geometry and topology in hamiltonian dynamics and statistical mechanics. Berlin: Springer.

    Book  Google Scholar 

  31. Landau, L., and E. Lifshitz. 2007. Statistical physics, part I, 3rd ed. New York: Elsevier.

    Google Scholar 

  32. Hanski, I., G. Zurita, M.I. Bellocq, and J. Rybicki. 2013. Species-fragmented area relationship. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1311491110.

    Article  Google Scholar 

  33. von Bloh, W., C. Bounama, and S. Franck. 2003. Cambrian explosion triggered by geosphere-biosphere feedbacks. Geophysical Research Letters 30: 1963–1968.

    Google Scholar 

  34. Granovetter, M. 1973. The strength of weak ties. American Journal of Sociology 78: 1360–1380.

    Article  Google Scholar 

  35. Wallace, R., and R. Fullilove. 2014. State policy and the political economy of criminal enterprise: Mass incarceration and persistent organized hyperviolence in the USA. Structural Change and Economic Dynamics 31: 17–31.

    Article  Google Scholar 

  36. Wallace, R., M. Fullilove, and A. Flisher. 1996. AIDS, violence, and behavioral coding: information theory, risk behavior, and dynamic process on core-group sociogeographic networks. Social Science and Medicine 43: 339–352.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrick Wallace .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallace, R. (2020). Expected Unexpecteds: Cambrian Explosions in Lamarckian Systems. In: Cognitive Dynamics on Clausewitz Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-26424-6_9

Download citation

Publish with us

Policies and ethics