Skip to main content

Reconsidering Doctrine and Its Discontents

  • Chapter
  • First Online:
Cognitive Dynamics on Clausewitz Landscapes
  • 170 Accesses

Abstract

Military doctrine—learned or inherited, Lamarckian or Darwinian—provides a backbone from which, over space, time, and social structure, operational, and eventually, tactical scale activities, are expressed. In a sense, this construct is the “body” that engages in actions driven by a strategy that may itself be another expression of doctrine. Doctrine tells how to fight a war at the different scales and levels of organization of the confrontation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace, R. 2017. Computational psychiatry: A systems biology approach to the epigenetics of mental disorder. New York: Springer.

    Book  Google Scholar 

  2. Cohen, I. 2006. Immune system computation and the immulogical hommunculus. In MoDels 2006, LCNS, vol. 4199, ed. O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, 499–512. Heidelberg: Springer.

    Google Scholar 

  3. Cohen, I., and D. Harel. 2007. Explaining a complex living system: Dynamics, multiscaling, and emergence. Journal of the Royal Society: Interface 4: 175–182.

    Google Scholar 

  4. Wallace, R., and D. Wallace. 2008. Punctuated equilibrium in statistical models of generalized coevolutionary resilience: how sudden ecosystem transitions can entrain both phenotype expression and Darwinian selection. Transactions on Computational Systems Biology IX, LNBI 5121: 23–85.

    Google Scholar 

  5. Wallace, R., and D. Wallace. 2009. Code, context, and epigenetic catalysis in gene expression. Transactions on Computational Systems Biology XI LNBI 5750: 283–334.

    Google Scholar 

  6. Wallace, R., and D. Wallace. 2016. Gene expression and its discontents: The social production of chronic disease, 2nd ed. New York: Springer.

    Book  Google Scholar 

  7. O’Nullain, S. 2008. Code and context in gene expression, cognition, and consciousness. In The codes of life: The rules of macroevolution, ed. M. Barbiere, 347–356. New York: Springer. Chap. 15.

    Google Scholar 

  8. Dretske, F. 1994. The explanatory role of information. Philosophical Transactions of the Royal Society A 349: 59–70.

    Article  Google Scholar 

  9. Jablonka, E., and M. Lamb. 1995. Epigenetic inheritance and evolution: The Lamarckian dimension. Oxford, UK: Oxford University Press.

    Google Scholar 

  10. Jablonka, E., and M. Lamb. 1998. Epigenetic inheritance in evolution. Journal of Evolutionary Biology 11: 159–183.

    Article  Google Scholar 

  11. Backdahl, L., A. Bushell, and S. Beck. 2009. Inflammatory signalling as mediator of epigenetic modulation in tissue-specific chronic inflammation. The International Journal of Biochemistry and Cell Biology 41: 176–184.

    Article  Google Scholar 

  12. Turner, B. 2000. Histone acetylation and an epigenetic code. Bioessays 22: 836–845.

    Article  Google Scholar 

  13. Janisch, R., and A. Bird. 2003. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics Supplement 33: 245–254.

    Article  Google Scholar 

  14. Jablonka, E. 2004. Epigenetic epidemiology. International Journal of Epidemiology 33: 929–935.

    Article  Google Scholar 

  15. Foley, D., J. Craid, R. Morley, C. Olsson, T. Dwyer, K. Smith, and R. Saffery. 2009. Prospects for epigenetic epidemiology. American Journal of Epidemiology 169: 389–400.

    Article  Google Scholar 

  16. Scherrer, K., and J. Jost. 2007a. The gene and the genon concept: A functional and information-theoretic analysis. Molecular Systems Biology 3: 87–95.

    Article  Google Scholar 

  17. Scherrer, K., and J. Jost. 2007b. Gene and genon concept: Coding versus regulation. Theory in Bioscience 126: 65–113.

    Article  Google Scholar 

  18. Walace, R. 2015. An information approach to mitochondrial dysfunction: Extending Swerdlow’s hypothesis. Singapore: World Scientific.

    Book  Google Scholar 

  19. Cover, T., and J. Thomas. 2006. Elements of information theory, 2nd ed. New York: Wiley.

    Google Scholar 

  20. Protter, P. 2005. Stochastic integration and differential equations, 2nd ed. New York: Springer.

    Book  Google Scholar 

  21. de Groot, S., and P. Mazur. 1984. Non-equilibrium thermodynamics. New York: Dover.

    Google Scholar 

  22. Wallace, R., L. Fernando Chaves, L. Bergmann, C. Ayres, L. Hogerwerf, R. Kock, and R.G. Wallace. 2018. Clear-cutting disease control: Capital-led deforestation, public health austerity, and vector-borne infection. New York: Springer.

    Book  Google Scholar 

  23. Richerson, P., and R. Boyd. 2006. Not by genes alone: How culture transformed human evolution. Chicago, IL: Chicago University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrick Wallace .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallace, R. (2020). Reconsidering Doctrine and Its Discontents. In: Cognitive Dynamics on Clausewitz Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-26424-6_6

Download citation

Publish with us

Policies and ethics