Skip to main content

Abstract

Many critical moments in a child’s early life relate to voice: the first cry on entering the world, the first laugh, and the first words. As a child grows, voice becomes an important part of identity, reflecting age, emotion, gender, and health (Smith, Semin Speech Lang 34(2):63–70, 2013). In order to understand and appropriately manage voice disorders, an understanding of normal phonatory physiology is required. This chapter provides an overview of laryngeal anatomy and physiology of voice production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isshiki N, Haji T, Yamamoto Y, Mahieu HF. Thyroplasty for adductor spasmodic dysphonia: further experiences. Laryngoscope. 2001;111:615–21.

    Article  CAS  PubMed  Google Scholar 

  2. Smith ME. Care of the child’s voice: a pediatric otolaryngologist’s perspective. Smin Speech Lang. 2013;34(2):63–70.

    Article  Google Scholar 

  3. Tucker HM. The larynx. New York: Thieme Medical Publishers; 1993.

    Google Scholar 

  4. Titze IR. Principles of voice production. Iowa City: National Center for Voice and Speech; 2000.

    Google Scholar 

  5. Hunter EJ, Titze IR. Review of range of arytenoid cartilage motion. Acoust Res Lett Online. 2000;6(3):112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosen CA, Simpson B. Operative techniques in laryngology. New York: Springer Publishing; 2008.

    Google Scholar 

  7. Crumley RL. Unilateral recurrent laryngeal nerve paralysis. J Voice. 1994;8(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  8. Sataloff RT, Heman-Ackah YD, Hawkshaw MJ. Clinical anatomy and physiology of the voice. Otolaryngol Clin N Am. 2007;40:909–29.

    Article  Google Scholar 

  9. Miri AK. Mechanical characterization of vocal fold tissue: a review study. J Voice. 2014;28(6):657–67.

    Article  PubMed  Google Scholar 

  10. Gray SD, Titze IR, Alipour F, Hammond TH. Biomechanical and histologic observations of vocal fold fibrous proteins. Ann Otol Rhinol Laryngol. 2000;109:77–85.

    Article  CAS  PubMed  Google Scholar 

  11. Hirano M. Phonosurgical anatomy of the larynx. In: Ford CN, Bless DM, editors. Phonosurgery. New York: Raven Press; 1991. p. 25–41.

    Google Scholar 

  12. Hirano M, Yoshida T, Kurita S, Kiyokawa K, Sato K, Tateishi O. Anatomy and behavior of the vocal process. In: Baer T, Sasaki C, Harris K, editors. Laryngeal function in phonation and respiration. Boston: College-Hill Press; 1987. p. 1–13.

    Google Scholar 

  13. Milutinovic Z, Polic D, Milenkovic S, Sretenovic V. Spatial arrangement of the structural elements of vocal fold layers: an adjustment to the vibration process. J Voice. 1998;12(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  14. Hirano M, Kakita Y. Cover-body theory of vocal cord vibration. In: Daniloff RG, editor. Speech science. San Diego: College Hill Press; 1985.

    Google Scholar 

  15. Pressman J. Sphincter action of the larynx. Arch Otolaryngol. 1941;33:351–77.

    Article  Google Scholar 

  16. Young N, Wadie M, Sasaki CT. Neuromuscular basis for ventricular fold function. Ann Otol Rhinol Laryngol. 2012;121(5):317–21.

    Article  PubMed  Google Scholar 

  17. Lindestad PA, Blixt V, Pahlberg-Olsson J, Hammarberg B. Ventricular fold vibration in voice production: a high-speed imaging study with kymographic, acoustic, and perceptual analyses of a voice patient and a vocally healthy subject. Logoped Phoniatr Vocol. 2004;29:162–70.

    Article  PubMed  Google Scholar 

  18. Yoshida Y, Tanaka Y, Saito T, Shimakazi T, Hirano M. Peripheral nervous system in the larynx. An anatomical study on the motor, sensory and autonomic nerve fibers. Folia Phoniatr. 1992;44:194–219.

    Article  CAS  Google Scholar 

  19. Jurgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev. 2002;26:235–58.

    Article  PubMed  Google Scholar 

  20. Van Daele DJ, Cassell MD. Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle. Neuroscience. 2009;162:501–24.

    Article  PubMed  CAS  Google Scholar 

  21. McCulloch TM, Van Daele D, Ciucci MR. Otolaryngology head and neck surgery: an integrative view of the larynx. Head Neck. 2011;33:S46–53.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aronson AE. Clinical voice disorders: an interdisciplinary approach. New York: Thieme; 1990.

    Google Scholar 

  23. Hirano M, Kurita S, Nakashima T. Growth, development and aging of human vocal folds. In: Bless DM, Abbs JH, editors. Vocal fold physiology contemporary research and clinical issues. San Diego: College-Hill Press; 1983.

    Google Scholar 

  24. McCallister A, Sjolander P. Children’s voice and voice disorders. Semin Speech Lang. 2013;34:71–9.

    Article  Google Scholar 

  25. Sapienza CM, Ruddy BH, Baker S. Laryngeal structure and function in the pediatric larynx: clinical applications. Lang Speech Hear Serv Schools. 2004;35:299–307.

    Article  Google Scholar 

  26. Kahane JC. Growth of the human prepubertal and pubertal larynx. J Speech Hear Res. 1982;25:446–55.

    Article  CAS  PubMed  Google Scholar 

  27. Boseley ME, Hartnick CJ. Development of the human true vocal fold: depth of cell layers and quantifying cell types within the lamina propria. Ann Otol Rhinol Laryngol. 2006;115:784–8.

    Article  PubMed  Google Scholar 

  28. Hartnick CJ, Rehbar R, Prasad V. Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope. 2005;115(1):4–15.

    Article  PubMed  Google Scholar 

  29. Schweinfurth JM, Thibeault SL. Does hyaluronic acid distribution in the larynx relate to the newborn's capacity for crying? Laryngoscope. 2008;118(9):1692–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hirano M, Kurita S, Kiyokawa K. Posterior glottis: morphological study in excised human larynges. Ann Otol Rhinol Laryngol. 1986;95:576–81.

    Article  CAS  PubMed  Google Scholar 

  31. Possamai P, Hartley B. Voice disorders in children. Pediatr Clin N Am. 2013;60:879–92.

    Article  Google Scholar 

  32. Michelsson K, Michelsson O. Phonation in the newborn, infant cry. Int J Pediatr Otorhinolaryngol. 1999;49(Suppl 1):S297–301.

    Article  PubMed  Google Scholar 

  33. Hollien H. On pubescent voice change in males. J Voice. 2012;26(2):e29–40.

    Article  PubMed  Google Scholar 

  34. Wilson DK. Voice problems of children. 2nd ed. Baltimore: Williams and Wilkins; 1979.

    Google Scholar 

  35. Boltezar IH, Burger ZR, Zargi M. Instability of voice in adolescence: pathologic condition or normal developmental variation? J Pediatr. 1997;130:185–90.

    Article  CAS  PubMed  Google Scholar 

  36. Cooksey J. Voice transformation in male adolescents. In: Thurman L, Welch G, editors. Bodymind and voice: foundations of voice education. Collegeville: The Voice Care Network; 2000. p. 718–37.

    Google Scholar 

  37. Gackle L. Understanding voice transformation in female adolescents. In: Thurman L, Welch G, editors. Bodymind and voice: foundations of voice education. Collegeville: The Voice Care Network; 2000. p. 739–44.

    Google Scholar 

  38. Van den Berg J. Myoelastic-aerodynamic theory of voice production. J Speech Hear Res. 1958;1(3):227–44.

    Article  Google Scholar 

  39. Titze IR. The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am. 1988;83(4):1536–52.

    Article  CAS  PubMed  Google Scholar 

  40. Chhetri DK, Park SJ. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity. Laryngoscope. 2016;126(5):1123–30.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rubin HJ, LeCover M, Vennard W. Vocal intensity, subglottic pressure and air flow relationships in singers. Folia Phoniatr (Basel). 1967;19(6):393–413.

    Article  CAS  Google Scholar 

  42. Titze IR. On the relation between subglottal pressure and fundamental frequency in phonation. J Acoust Soc Am. 1989;85(2):901–6.

    Article  CAS  PubMed  Google Scholar 

  43. Titze IR, Sundberg J. Vocal intensity in speakers and singers. J Acoust Soc Am. 1992;91(5):2936–46.

    Article  CAS  PubMed  Google Scholar 

  44. Stathopoulos ET, Sapienza CM. Developmental changes in laryngeal and respiratory function with variations in sound pressure level. J Speech Lang Hear Res. 1997;40(3):595–614.

    Article  CAS  PubMed  Google Scholar 

  45. Weinrich B, Baker S, Kelchner L, Middendorf J, Krival K, Elluru R, et al. Examination of aerodynamic measures and strain by vibratory source. Otolaryngol Head Neck Surg. 2007;136(3):455–8.

    Article  PubMed  Google Scholar 

  46. Weinrich B, Brehm SB, Knudsen C, McBride S, Hughes M. Pediatric normative data for the KayPENTAX phonatory aerodynamic system model 6600. J Voice. 2013;27(1):46–56.

    Article  PubMed  Google Scholar 

  47. Titze IR, Luschei ES, Hirano M. Role of the thyroarytenoid muscle in regulation of fundamental frequency. J Voice. 1989;3(3):213–24.

    Article  Google Scholar 

  48. Lowell SY, Story BH. Simulated effects of cricothyroid and thyroarytenoid muscle activation on adult-male vocal fold vibration. J Acoust Soc Am. 2006;120(1):386–97.

    Article  PubMed  Google Scholar 

  49. Hoffman MR, Devine EE, Remacle M, Ford CN, Wadium E, Jiang JJ. Combined type IIIB with bilateral type I thyroplasty for pitch lowering with maintenance of vocal fold tension. Eur Arch Otorhinolaryngol. 2014;271(6):1621–9.

    Article  PubMed  Google Scholar 

  50. Zhang Z. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. J Acoust Soc Am. 2016;139(4):1493–507.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jiang JJ, Tao C. The minimum glottal airflow to initiate vocal fold oscillation. J Acoust Soc Am. 2007;121(5 Pt 1):2873–81.

    Article  PubMed  Google Scholar 

  52. Hottinger DG, Tao C, Jiang JJ. Comparing phonation threshold flow and pressure by abducting excised larynges. Laryngoscope. 2007;117(9):1695–9.

    Article  PubMed  Google Scholar 

  53. Alves M, Kruger E, Pillay B, van Lierde K, van der Linde J. The effect of hydration on voice quality in adults: a systematic review. J Voice. 2017;33(1):125.e13–125.e128.

    Article  Google Scholar 

  54. Finkelhor BK, Titze IR, Durham PL. The effect of viscosity changes in the vocal folds on the range of oscillation. J Voice. 1987;1:320–5.

    Article  Google Scholar 

  55. Jiang J, Verdolini K, Aquino B, et al. Effects of dehydration on phonation in excised canine larynges. Ann Otol Rhinol Laryngol. 2000;109:568–75.

    Article  CAS  PubMed  Google Scholar 

  56. Witt RE, Regner MF, Tao C, Rieves AL, Zhuang P, Jiang JJ. Effect of dehydration on phonation threshold flow in excised canine larynges. Ann Otol Rhinol Laryngol. 2009;118(2):154–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tanner K, Fujiki RB, Dromey C, Merrill RM, Robb W, Kendall KA, et al. Laryngeal desiccation challenge and nebulized isotonic saline in healthy male singers and nonsingers: effects on acoustic, aerodynamic, and self-perceived effort and dryness measures. J Voice. 2016;30(6):670–6.

    Article  PubMed  Google Scholar 

  58. Leydon C, Wroblewski M, Eichorn N, Sivasankar M. A meta-analysis of outcomes of hydration intervention on phonation threshold pressure. J Voice. 2010;24(6):637–43.

    Article  PubMed  Google Scholar 

  59. Chan RW, Tayama N. Biomechanical effects of hydration in vocal fold tissues. Otolaryngol Head Neck Surg. 2002;126:528–37.

    Article  PubMed  Google Scholar 

  60. Zhang Y, Czerwonka L, Tao C, Jiang JJ. A biphasic theory for the viscoelastic behaviors of vocal fold lamina propria in stress relaxation. J Acoust Soc Am. 2008;123(3):1627–36.

    Article  PubMed  Google Scholar 

  61. Yang S, Zhang Y, Mills RD, Jiang JJ. Quantitative study of the effects of dehydration on the viscoelastic parameters in the vocal fold mucosa. J Voice. 2017;31(3):269–74.

    Article  PubMed  Google Scholar 

  62. Lindestad PA, Hertegard S, Bjorck G. Laryngeal adduction asymmetries in normal speaking subjects. Logoped Phoniatr Vocol. 2004;29(3):128–34.

    Article  PubMed  Google Scholar 

  63. Hirano M, Kurita S, Yukizane K, et al. Asymmetry of the laryngeal framework: a morphologic study of cadaver larynges. Ann Otol Rhinol Laryngol. 1989;98(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  64. Hamdan AL, Husseini ST, Halawai A, Sibai A. Arytenoid asymmetry in relation to vocal symptoms in singers. J Voice. 2011;25(2):241–4.

    Article  PubMed  Google Scholar 

  65. Chhetri DK, Neubauer J, Sofer E. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics. Laryngoscope. 2014;124(11):2544–50.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simpson CB, Cheung EJ, Jackson CJ. Vocal fold paresis: clinical and electrophysiological features in a tertiary laryngology practice. J Voice. 2009;23(3):396–8.

    Article  PubMed  Google Scholar 

  67. Maunsell R, Ouaknine M, Giovanni A, Crespo A. Vibratory pattern of vocal folds under tension asymmetry. Otolaryngol Head Neck Surg. 2006;135(3):438–44.

    Article  PubMed  Google Scholar 

  68. Jiang JJ, Zhang Y, McGilligan C. Chaos in voice, from modeling to measurement. J Voice. 2006;20(1):2–17.

    Article  PubMed  Google Scholar 

  69. Herzel H, Berry D, Titze I, Steinecke I. Nonlinear dynamics of the voice: signal analysis and biomechanical modeling. Chaos. 1995;5:30–4.

    Article  PubMed  Google Scholar 

  70. Herzel H. Bifurcations and chaos in voice signals. Appl Mech Rev. 1993;46:399–413.

    Article  Google Scholar 

  71. Herzel H, Knudsen C. Bifurcations in a vocal fold model. Nonlinear Dynamics. 1995;7:53–64.

    Google Scholar 

  72. Jiang JJ, Zhang Y, Stern J. Modeling of chaotic vibrations in symmetric vocal folds. J Acoust Soc Am. 2001;110:2120–8.

    Article  CAS  PubMed  Google Scholar 

  73. Berry DA, Herzel H, Titze IR, Story BH. Bifurcations in excised larynx experiments. J Voice. 1996;10:129–38.

    Article  CAS  PubMed  Google Scholar 

  74. Jiang JJ, Zhang Y, Ford CN. Nonlinear dynamics of phonations in excised larynx experiments. J Acoust Soc Am. 2003;114:1–8.

    Article  Google Scholar 

  75. Mende W, Herzel H, Wemke K. Bifurcations and chaos in newborn infant cries. Phys Lett A. 1990;145:418–24.

    Article  Google Scholar 

  76. Kumar A, Mullick SK. Nonlinear dynamical analysis of speech. J Acoust Soc Am. 1996;100:615–29.

    Article  Google Scholar 

  77. Huang N, Zhang Y, Calawerts W, Jiang JJ. Optimized nonlinear dynamic analysis of pathologic voices with laryngeal paralysis based on the minimum embedding dimension. J Voice. 2017;31(2):249.e1–7.

    Article  Google Scholar 

  78. Titze I. Workshop on acoustic voice analysis: summary statement. Denver: National Center for Voice and Speech; 1995.

    Google Scholar 

  79. Sprecher A, Olszewski A, Jiang JJ, Zhang Y. Updating signal typing in voice: addition of type 4 signals. J Acoust Soc Am. 2010;127(6):3710–6.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fant G. The acoustic theory of speech production. The Hague: Moulton; 1960.

    Google Scholar 

  81. Kent RD, Vorperian HK. Static measurements of vowel formant frequencies and bandwidths: a review. J Commun Disord. 2018;74:74–97.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Story BH, Bunton K. Formant measurement in children’s speech based on spectral filtering. Speech Comm. 2016;76:93–111.

    Article  Google Scholar 

  83. Vorperian HK, Kent RD. Vowel acoustic space development in children: a synthesis of acoustic and anatomic data. J Speech Lang Hear Res. 2007;50:1510–45.

    Article  PubMed  Google Scholar 

  84. Yang S, Mu L. An investigation of the third formant of /α/ in prepubertal children. J Voice. 1989;3:321–3.

    Article  Google Scholar 

  85. Vorperian HK, Wang S, Schmiek EM, Durtschi RB, Kent RD, Gentry LR, et al. Developmental sexual dimorphism of the oral and pharyngeal portions of the vocal tract: an imaging study. J Speech Lang Hear Res. 2011;54:995–1010.

    Article  PubMed  Google Scholar 

  86. Hollien H. On vocal registers. J Phon. 1974;2:125–43.

    Google Scholar 

  87. Henrich N. Mirroring the voice from Garcia to the present day: some insights into singing voice registers. Logoped Phoniatr Vocol. 2006;31:3–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Scott McMurray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoffman, M.R., Braden, M.N., McMurray, J.S. (2020). Physiology of Voice Production. In: McMurray, J., Hoffman, M., Braden, M. (eds) Multidisciplinary Management of Pediatric Voice and Swallowing Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-26191-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26191-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26190-0

  • Online ISBN: 978-3-030-26191-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics