Skip to main content

Introduction

  • Chapter
  • First Online:
Metal and Bone Drilling - The Thermal Aspects
  • 214 Accesses

Abstract

Drilling is a machining process to create a round hole in a workpiece using a drill. A drill is a rotating cylindrical tool with cutting edges on the working end. The drill feeds into the workpiece to generate a round hole. Such round hole is a common feature in product design to achieve various functional purposes, such as joining, access, and fluid passages. The size, shape, position, and surface integrity of the drilled holes are determined by the drill and drilling process parameters (particularly the rotational speed and feed rate), as well as the temperature, deformation, surface integrity, and thermal expansion of the drill and workpiece.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lütjering G, Williams JC (2007) Titanium. Springer, Berlin

    Google Scholar 

  2. Donachie MJ (2000) Titanium: A Technical Guide, 2nd edn. ASM International, Material Park

    Google Scholar 

  3. Kraft E (2003) Summary of emerging titanium cost reduction technologies. Oak Ridge National Laboratory Report ORNL/Sub/4000023694/

    Google Scholar 

  4. Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications. Adv Eng Mater 5:419–427

    Article  CAS  Google Scholar 

  5. Montgomery JS, Wells MGH (2001) Titanium armor applications in combat vehicles. JOM 53:29–32

    Article  CAS  Google Scholar 

  6. Brunette DM, Tengvall P, Textor M (2001) Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications. Springer, Berlin

    Book  Google Scholar 

  7. Machado AR, Wallbank J (1990) Machining of titanium and its alloys—a review. Proc Inst Mech Eng B J Eng Manuf 204:53–60

    Article  Google Scholar 

  8. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68:262–274

    Article  Google Scholar 

  9. Yang X, Richard Liu C (1999) Machining titanium and its alloys. Mach Sci Technol 3:107–139

    Article  CAS  Google Scholar 

  10. Rahman M, Wang Z-G, Wong Y-S (2006) A review on high-speed machining of titanium alloys. JSME Int J Ser C 49:11–20

    Article  CAS  Google Scholar 

  11. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280

    Article  Google Scholar 

  12. Watanabe I, Kiyosue S, Ohkubo C, Aoki T, Okabe T (2002) Machinability of cast commercial titanium alloys. J Biomed Mater Res 63:760–764

    Article  CAS  Google Scholar 

  13. Veiga C, Davim JP, Loureiro AJR (2013) Review on machinability of titanium alloys: the process perspective. Rev Adv Mater Sci 34:148–164

    CAS  Google Scholar 

  14. Zhang PF, Churi NJ, Pei ZJ, Treadwell C (2008) Mechanical drilling processes for titanium alloys: a literature review. Mach Sci Technol 12:417–444

    Article  CAS  Google Scholar 

  15. Hurless BE, Froes FH (2002) Lowering the cost of titanium. AMPTIAC Q 6:3–9

    Google Scholar 

  16. Hartung PD, Kramer BM, von Turkovich BF (1982) Tool wear in titanium machining. CIRP Ann 31:75–80

    Article  CAS  Google Scholar 

  17. Bermingham M, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tools Manuf 51:500–511

    Article  Google Scholar 

  18. Dornfeld D, Kim JS, Dechow H, Hewson J, Chen LJ (1999) Drilling burr formation in titanium alloy, Ti-6Al-4V. CIRP Ann 48:73–76

    Article  Google Scholar 

  19. Sakurai K, Adachi K, Ogawa K, Niba R (1992) Drilling of Ti-6Al-4V alloy. J Jpn Inst Light Metals 42:389–394

    Article  Google Scholar 

  20. Sakurai K, Adachi K, Ogawa K (1992) Low frequency vibratory drilling of Ti-6Al-4V alloy. J Jpn Inst Light Metals 42:633–637

    Article  Google Scholar 

  21. Sakurai K, Adachi K, Kamekawa T, Ogawa K, Hanasaki S (1996) Intermittently decelerated feed drilling of Ti-6Al-4V alloy. J Jpn Inst Light Metals 46:138–143

    Article  CAS  Google Scholar 

  22. Arai M, Ogawa M (1997) Effects of high pressure supply of coolant in drilling of titanium alloy. J Jpn Inst Light Metals 47:139–144

    Article  CAS  Google Scholar 

  23. Cantero JL, Tardío M, Canteli JA, Marcos-Bárcena M, Miguélez MH (2005) Dry drilling of alloy Ti-6Al-4V. Int J Mach Tools Manuf 45:1246–1255

    Article  Google Scholar 

  24. Li R, Shih AJ (2007) Tool temperature in titanium drilling. J Manuf Sci Eng 129:740–749

    Article  Google Scholar 

  25. Li R, Hegde P, Shih A (2007) High-throughput drilling of titanium alloys. Int J Mach Tools Manuf 47:63–74

    Article  Google Scholar 

  26. Li R, Shih A (2007) Spiral point drill temperature and stress in high-throughput drilling of titanium. Int J Mach Tools Manuf 47:2005–2017

    Article  Google Scholar 

  27. Li R, Shih AJ (2007) Finite element modeling of high-throughput drilling of Ti-6Al-4V. Trans NAMRI/SME 35:73–80

    CAS  Google Scholar 

  28. Li R, Riester L, Watkins TR, Blau PJ, Shih AJ (2008) Metallurgical analysis and nanoindentation characterization of Ti–6Al–4V workpiece and chips in high-throughput drilling. Mater Sci Eng A 472:115–124

    Article  Google Scholar 

  29. Grzesik W, Rech J, Żak K, Claudin C (2009) Machining performance of pearlitic–ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools. Int J Mach Tools Manuf 49:125–133

    Article  Google Scholar 

  30. Nayyar V, Kaminski J, Kinnander A, Nyborg L (2012) An experimental investigation of machinability of graphitic cast iron grades; flake, compacted and spheroidal graphite iron in continuous machining operations. Procedia CIRP 1:488–493

    Article  Google Scholar 

  31. Heck M, Ortner HM, Flege S, Reuter U, Ensinger W (2008) Analytical investigations concerning the wear behavior of cutting tools used for the machining of compacted graphite iron and grey cast iron. Int J Refract Met Hard Mater 26:197–206

    Article  CAS  Google Scholar 

  32. Dawson S, Hollinger I, Robbins M, Daeth J, Reuter U, Schulz H (2001) The effect of metallurgical variables on the machinability of compacted graphite iron. SAE International, V110–5, p 21

    Google Scholar 

  33. Lampman S, Moosbrugger C, DeGuire E (2008) ASM handbook: casting, vol 15. ASM International, Material Park

    Google Scholar 

  34. Dawson S, Schroeder T (2004) Practical applications for compacted graphite iron. AFS Trans 47:1–10

    Google Scholar 

  35. Alves SM, Schroeter RB, Bossardi JCDS, Andrade CLFD (2011) Influence of EP additive on tool wear in drilling of compacted graphite iron. J Braz Soc Mech Sci Eng 33:197–202

    Article  Google Scholar 

  36. Filipovic A, Stephenson DA (2006) Minimum quantity lubrication (MQL) applications in automotive power-train machining. Mach Sci Technol 10:3–22

    Article  CAS  Google Scholar 

  37. Tai BL, Stephenson DA, Shih AJ (2013) Workpiece temperature during deep-hole drilling of cast iron using high air pressure minimum quantity lubrication. J Manuf Sci Eng 135(031019):1–7

    Google Scholar 

  38. Tai BL, Stephenson DA, Shih AJ (2012) An inverse heat transfer method for determining workpiece temperature in MQL deep hole drilling. J Manuf Sci Eng 134(021006):1–8

    Google Scholar 

  39. Tai BL, Jessop A, Stephenson DA, Shih AJ (2012) Workpiece thermal distortion in MQL deep hole drilling - finite element modeling and experimental validation. J Manuf Sci Eng 134(011008):1–9

    Google Scholar 

  40. Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma: a histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18:261–268

    Article  CAS  Google Scholar 

  41. Hillery MT, Shuaib I (1999) Temperature effect in drilling of human and bovine bone. J Mater Process Technol 92:302–308

    Article  Google Scholar 

  42. Augustin G, Davila S, Udiljak T, Vedrina DS, Bagatin D (2009) Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report. Arch Orthop Trauma Surg 129:703–709

    Article  Google Scholar 

  43. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128:71–77

    Article  Google Scholar 

  44. Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S (2012) Cortical bone drilling and thermal osteonecrosis. Clin Biomech 27:313–325

    Article  Google Scholar 

  45. Berman AT, Reid JS, Yanicko DR, Sih GC, Zimmerman MR (1984) Thermally induced bone necrosis in rabbits: relation to implant failure in humans. Curr Orthop Pract 186:284–292

    Google Scholar 

  46. Palmisano AC, Tai BL, Belmont B, Irwin T, Shih AJ, Holmes J (2015) Comparison of cortical one drilling induced heat production among common drilling tools. J Orthop Trauma 29:e188–e193

    Article  Google Scholar 

  47. Tai BL, Palmisano AC, Belmont B, Irwin T, Shih AJ, Holmes J (2015) Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys 37:855–861

    Article  Google Scholar 

  48. Palmisano AC, Tai BL, Belmont B, Irwin TA, Shih A, Holmes JR (2016) Heat accumulation during sequential cortical bone drilling. J Orthop Res 34:463–470

    Article  Google Scholar 

  49. Liu Y, Belmont B, Wang Y, Tai B, Holmes J, Shih A (2017) Notched K-wire for low thermal damage bone drilling. Med Eng Phys 45:25–33

    Article  Google Scholar 

  50. Stoll A, Sebastian AJ, Klosinski R, Furness R (2008) Lean and environmentally friendly manufacturing – minimum quantity lubrication (MQL) is a key technology for driving the paradigm shift in machining operations. SAE Technical paper, SP-2208-011128

    Google Scholar 

  51. Tai B, Stephenson DA, Furness R, Shih A (2014) Minimum quantity lubrication (MQL) in automotive powertrain machining. Procedia CIRP 14:523–528

    Article  Google Scholar 

  52. Tai BL, Dasch JM, Shih AJ (2011) Evaluation and comparison of lubricant properties in minimum quantity lubrication machining. Mach Sci Technol 15:376–391

    Article  CAS  Google Scholar 

  53. Itoigawa F, Childs THC, Nakamura T, Belluco W (2006) Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy. Wear 260:339–344

    Article  CAS  Google Scholar 

  54. Heinemann R, Hinduja S, Barrow G, Petuelli G (2006) Effect of MQL on the tool life of small twist drills in deep-hole drilling. Int J Mach Tools Manuf 46:1–6

    Article  Google Scholar 

  55. Hussain MI, Taraman KS, Filipovic AJ, Immo G (2008) Experimental study to analyse the workpiece surface temperature in deep hole drilling of aluminium alloy engine blocks using MQL technology. J Achiev Mater Manuf Eng 31:1–6

    Google Scholar 

  56. Franssen BB, Schuurman AH, Van der Molen AM, Kon M (2010) One century of Kirschner wires and Kirschner wire insertion techniques: a historical review. Acta Orthop Belg 76:1–6

    PubMed  Google Scholar 

  57. Nichter LS, Spencer S, Navarrette PM, Kosari K (1992) The biomechanical efficacy of an oscillating K-wire driver. Ann Plast Surg 29:289–292

    Article  CAS  Google Scholar 

  58. Wassenaar EB, Franssen BBGM, van Egmond DB, Kon M (2006) Fixation of Kirschner wires: a comparison between hammering and drilling k-wires into ribs of pigs. Eur J Plast Surg 29:153–156

    Article  Google Scholar 

  59. Khanna A, Plessas SJ, Barrett P, Bainbridge LC (1999) The thermal effects of kirshner wire fixation on small bones. J Hand Surg Am 24:355–357

    Article  CAS  Google Scholar 

  60. Karmani S, Lam F (2004) The design and function of surgical drills and K-wires. Curr Orthop 18:484–490

    Article  Google Scholar 

  61. Pandey RK, Panda SS (2013) Drilling of bone: a comprehensive review. J Clin Orthop Trauma 4:15–30

    Article  Google Scholar 

  62. Wiggins KL, Malkin S (1976) Drilling of bone. J Biomech 9:553–559

    Article  CAS  Google Scholar 

  63. Bertollo N, Walsh WR (2011) Drilling of bone: practicality, limitations and complications associated with surgical drill bits. In: Klika V (ed) Biomechanics in applications. InTech, London

    Google Scholar 

  64. Huang C-H, Jan L-C, Li R, Shih A (2007) A three-dimensional inverse problem in estimating the applied heat flux of a titanium drilling-theoretical and experimental studies. Int J Heat Mass Transf 50:3265–3277

    Article  CAS  Google Scholar 

  65. Agapiou JS, DeVries MF (1990) On the determination of thermal phenomena during drilling—part I. Analytical models of twist drill temperature distributions. Int J Mach Tools Manuf 30:203–215

    Article  Google Scholar 

  66. Agapiou JS, DeVries MF (1990) On the determination of thermal phenomena during drilling—part II. Comparison of experimental and analytical twist drill temperature distributions. Int J Mach Tools Manuf 30:217–226

    Article  Google Scholar 

  67. Agapiou JS, Stephenson DA (1994) Analytical and experimental studies of drill temperatures. J Eng Ind 116:54–60

    Article  Google Scholar 

  68. Saxena UK, DeVries MF, Wu SM (1971) Drill temperature distributions by numerical solutions. J Eng Ind 93:1057–1065

    Article  Google Scholar 

  69. Watanabe K, Yokoyama K, Ichimiya R (1975) Thermal analyses of the drilling process. J Jpn Soc Precis Eng 41:1078–1083

    Article  Google Scholar 

  70. Fuh KH (1987) Computer aided design and manufacturing of multi-facet drills. PhD dissertation, University of Wisconsin at Madison

    Google Scholar 

  71. Chen W-C (1996) Effect of the cross-sectional shape design of a drill body on drill temperature distributions. Int Commun Heat Mass Transf 23:355–366

    Article  Google Scholar 

  72. Bono M, Ni J (2001) The effects of thermal distortions on the diameter and cylindricity of dry drilled holes. Int J Mach Tools Manuf 41:2261–2270

    Article  Google Scholar 

  73. Bono M, Ni J (2002) A model for predicting the heat flow into the workpiece in dry drilling. J Manuf Sci Eng 124:773–777

    Article  Google Scholar 

  74. Bono M, Ni J (2005) The location of the maximum temperature on the cutting edges of a drill. Int J Mach Tools Manuf 46:901–907

    Article  Google Scholar 

  75. Strenkowski JS, Hsieh CC, Shih AJ (2004) An analytical finite element technique for predicting thrust force and torque in drilling. Int J Mach Tools Manuf 44:1413–1421

    Article  Google Scholar 

  76. Guo YB, Dornfeld DA (1998) Finite element analysis of drilling burr minimization with a backup material. Trans NAMRI/SME 26:207–212

    Google Scholar 

  77. Guo YB, Dornfeld DA (2000) Finite element modeling of burr formation process in drilling 304 stainless steel. J Manuf Sci Eng 122:612–619

    Article  Google Scholar 

  78. Min S, Dornfeld DA, Kim JS, Shyu B (2001) Finite element modeling of burr formation in metal cutting. Mach Sci Technol 5:307–322

    Article  Google Scholar 

  79. Marusich TD, Usui S, Aphale R, Saini N, Li R, Shih AJ (2006) Three-dimensional finite element modeling of drilling processes. Presented at the 2006 ASME manufacturing science and engineering conference (MSEC), October 8–11, Ypsilanti, Michigan

    Google Scholar 

  80. Kalidas S, Kapoor SG, DeVor RE (2002) Influence of thermal effects on hole quality in dry drilling, part 2: thermo-elastic effects on hole quality. J Manuf Sci Eng 124:267–274

    Article  Google Scholar 

  81. Davidson SRH, James DF (2003) Drilling in bone: modeling heat generation and temperature distribution. J Biomech Eng 125:305–314

    Article  Google Scholar 

  82. Lee J, Rabin Y (2011) A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys 33:1234–1244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shih, A.J., Tai, B.L., Li, R. (2019). Introduction. In: Metal and Bone Drilling - The Thermal Aspects. Springer, Cham. https://doi.org/10.1007/978-3-030-26047-7_1

Download citation

Publish with us

Policies and ethics