Skip to main content

The Birth of the Maser—Oil and the Milky Way: Applications of the Maser

  • Chapter
  • First Online:
Nico Bloembergen

Part of the book series: Springer Biographies ((SPRINGERBIOGS))

  • 336 Accesses

Abstract

During the time that Bloembergen was working on NMR, many others were doing research on microwaves for radar. The radar technology was continuously improved, but there were still problems with the signal-to-noise ratio. The technical question of how to obtain lower noise led to a fundamental physical principle: stimulated emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In normal dispersion (color shift, for example by dispersion in a prism), the refractive index decreases with increasing wavelength. In anomalous dispersion, the refractive index increases with increasing wavelength.

  2. 2.

    In normal matter, negative kelvin temperatures are not possible, whence 0 K (−273 °C) is the lowest possible temperature. There are systems (not ordinary matter) in which negative kelvin temperatures are possible. Those systems can reach a temperature of, for example, −400 °C. The Purcell and Pound system loses internal energy and was therefore described by the authors as having a negative temperature.

  3. 3.

    A transient event is a short-lived burst of energy in a system caused by a sudden change of state. Wikipedia.

  4. 4.

    Doping makes a non-conductor into a semiconductor like silicon by adding small quantities (impurities) of substances such as phosphorus and boron. Wikipedia.

  5. 5.

    Ruby is a red gem with the mineralogical name corundum and the chemical formula Al2O3 (aluminum oxide). Natural ruby is expensive, but much cheaper synthetic ruby is used in physics. The red color is caused by “doping” of the mineral with chrome.

  6. 6.

    Thermal noise can be expressed in terms of the so-called noise temperature. The noise must be as low as possible. A good radio receiver would have a noise below 100 K.

  7. 7.

    Isotropically means exhibiting the same properties or behavior in all directions. Wikipedia.

References

  1. Bloembergen AR. Het gezin van Rie en Auke Bloembergen 1917–1956. Eigen Beheer (2003)

    Google Scholar 

  2. Einstein A. Zur Quantentheorie der Strahlung. Mitteilungen der Physikalischen Gesellschaft zu Zürich, 1916 en Physikalische Zeitschrift. 18: 121–128 (1917)

    Google Scholar 

  3. Tolman RC. Duration of Molecules in Upper Quantum States. Phys Rev 23: 693–709 (1924)

    Article  Google Scholar 

  4. Kramers HA. The Law of Dispersion and Bohr’s Theory of Spectra. Nature 113:673–674 (1925)

    Article  Google Scholar 

  5. Ladenburg R. Dispersion in Electrically Excited Gases. Rev Mod Phys 5:243–256 (1933)

    Article  Google Scholar 

  6. Lukishova SG. Valentin A. Fabrikant: Negative absorption, his 1951 patent application for amplification of electromagnetic radiation (ultraviolet, visible, infrared and radio spectral regions) and his experiments.. J Europ Opt Soc Rapid Publ 5: 10045S1–10 (2010)

    Google Scholar 

  7. nobelprize.org/nobel_prizes/physics/laureates/1966/kastler-bio.html

    Google Scholar 

  8. Brossel J and Kastler A. La détection de la résonance magnétique des niveaux excités: l’effet de dépolarization des radiations de résonance optique et de fluorescence. Compt Rend Acad Sci 229: 1213 (1949)

    Google Scholar 

  9. Lukishova SG. Valentin A. Fabrikant: Negative absorption, his 1951 patent application for amplification of electromagnetic radiation (ultraviolet, visible, infrared and radio spectral regions) and his experiments.. J Europ Opt Soc Rapid Publ 5: 10045S1–10 (2010)

    Google Scholar 

  10. Townes CH. How the Laser Happened. Oxford University Press, New York (1999)

    Google Scholar 

  11. Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)

    Google Scholar 

  12. Lamb WE Jr and Retherford RC. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys Rev 72:241–243 (1947)

    Article  Google Scholar 

  13. Lamb WE Jr and Retherford RC. Fine Structure of the Hydrogen Atom. Part 1. Phys Rev 79:549–572 (1950)

    Article  Google Scholar 

  14. Pound RV. Nuclear Spin Relaxation Times in Single Crystals of LiF. Phys Rev 81:156–157 (1951)

    Article  Google Scholar 

  15. Purcell EM and Pound RV. A Nuclear Spin System at Negative Temperature. Phys Rev 81:279 (1951)

    Article  Google Scholar 

  16. Ramsey NF and Pound RV. Nuclear Audiofrequency Spectroscopy by Resonant Heating of the Nuclear Spin System. Phys Rev 81: 278–279 (1951)

    Article  Google Scholar 

  17. Letter from NF Ramsey to RW Dixon, 14 February 2006

    Google Scholar 

  18. Ramsey NF. Nuclear Moments. Ann Rev Nuclear Science 1: 97–106 (1952)

    Article  Google Scholar 

  19. Interview Rob Herber with RV Pound 21 September 2007

    Google Scholar 

  20. Interview Joan Bromberg and Paul L Kelley with Nicolaas Bloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html

  21. Townes CH. How the Laser Happened. Oxford University Press, New York (1999)

    Google Scholar 

  22. Interview Rob Herber with N Ramsey, 20 September 2007

    Google Scholar 

  23. Myers RA and Dixon RW. Who invented the laser: An analysis of the early patents. Hist Stud Phys Biol Sci 34:115–149 (2003)

    Article  Google Scholar 

  24. Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)

    Google Scholar 

  25. Townes CH. How the Laser Happened. Oxford University Press, New York (1999)

    Google Scholar 

  26. Cleeton CE and Williams NH, A Magnetostatic Oscillator for the Generation of 1 to 3 cm Waves. Phys Rev 44: 421 (1933)

    Article  Google Scholar 

  27. Cleeton CE and Williams NH. Electromagnetic Waves of 1.1 cm Wave-length and the Absorption Spectrum of Ammonia. Phys Rev 45:234–237 (1934)

    Article  Google Scholar 

  28. Townes CH. How the Laser Happened. Oxford University Press, New York (1999)

    Google Scholar 

  29. Townes CH. The Ammonia Spectrum and Line Shapes Near 1.25-cm Wave-Length. Phys Rev 70:665–671 (1946)

    Article  Google Scholar 

  30. Gordon JP, Zeiger HJ and Townes CH. Molecular Device and New Hyperfine Structure in the Microwave Spectrum of NH3. Phys Rev 95:282–284 (1954)

    Google Scholar 

  31. Gordon JP, Zeiger HJ and Townes CH. The Maser – New Type of Microwave Amplifier, Frequency Standard, and Spectrometer. Phys Rev 99:1264–1274 (1955)

    Article  Google Scholar 

  32. Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)

    Google Scholar 

  33. Interview Rob Herber with N Ramsey 20 September 2007

    Google Scholar 

  34. Interview Jeff Hecht with N Bloembergen, 5 Nov 1984, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA

    Google Scholar 

  35. Interview Joan Bromberg and Paul L Kelley with N Bloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html

  36. Interview Rob Herber with N Bloembergen, 6 December 2006

    Google Scholar 

  37. Versitron Acts As Ultra Sensitive Amplifier And Thermal Detector. The Tech, February 8 (1957)

    Google Scholar 

  38. Interview Rob Herber with N Bloembergen, 6 December 2006

    Google Scholar 

  39. Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)

    Google Scholar 

  40. Interview Joan Bromberg and Paul L Kelley met NBloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html

  41. Interview Rob Herber with N Bloembergen, 7 December 2006

    Google Scholar 

  42. Mattson J, Simon M. Pioneers of NMR and Magnetic Resonance in Medicine. The story of MRI. Dean Books, Jericho, 1996

    Google Scholar 

  43. Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)

    Google Scholar 

  44. Interview Arthur Guenther with D.N.G. Basov, 14 September 1984. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4495.html

  45. Interview Joan Bromberg J and Paul L Kelley with N Bloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html

  46. Bloembergen N. Proposal for a New Type of Solid State Maser. Phys Rev 104:324–327 (1956)

    Google Scholar 

  47. Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)

    Google Scholar 

  48. Townes CH. How the Laser Happened. Oxford University Press, New York (1999)

    Google Scholar 

  49. Bloembergen AR. Het gezin van Rie en Auke Bloembergen 1917–1956. Eigen Beheer (2003)

    Google Scholar 

  50. Interview Joan Bromberg J and Paul L Kelley with N Bloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html

  51. Townes CH. How the Laser Happened. Oxford University Press, New York (1999)

    Google Scholar 

  52. Artman JO, Bloembergen N and Shapiro S. Operation of a Three-Level Solid State Maser at 21 cm. Phys Rev 109:1392–1393 (1958)

    Article  Google Scholar 

  53. Artman JO, Bloembergen N and Shapiro S. Operation of a Three-Level Solid State Maser at 21 cm. Phys Rev 109:1392–1393 (1958)

    Article  Google Scholar 

  54. Makhov G, Kikuchi C, Lambe J and Terhune RW. Maser Action in Ruby Phys Rev 109:1399–1400 (1958)

    Google Scholar 

  55. Interview Jeff Hecht with N Bloembergen. 5 Nov 1984, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA

    Google Scholar 

  56. Bloembergen N. Uninterrupted Amplification Key Stimulated Emission of Radiation from a Substance Having Three Energy States. United States Patent Office 2.909.654 (1959)

    Google Scholar 

  57. Townes CH. Production of Electromagnetic Energy. United States Patent Office 2.879.439 (1959)

    Google Scholar 

  58. Myers RA and Dixon RW. Who invented the laser: An analysis of the early patents. Hist Stud Phys Biol Sci 34:115–149 (2003)

    Article  Google Scholar 

  59. Shapiro S and Bloembergen N. Relaxation Effects in a Maser Material, K3(CoCr)(CN)6. Phys Rev 116:1453–1458 (1959)

    Article  Google Scholar 

  60. Bloembergen N. (ed) Encounters in Magnetic Resonances. World Scientific, Singapore (1996)

    Google Scholar 

  61. Interview Rob Herber with D and N Bloembergen, 7 December 2006

    Google Scholar 

  62. Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)

    Google Scholar 

  63. Ramsey N. The Atomic Hydrogen Maser. Metrologica 1:7–15 (1965)

    Article  Google Scholar 

  64. http://tycho.usno.navy.mil/maser.html

  65. www.timeanddate.com

  66. en.wkipedia.org

    Google Scholar 

  67. Interview Rob Herber with N Ramsey, 20 September 2007

    Google Scholar 

  68. Bloembergen N. Paramagnetic Resonance Precession Method and Apparatus for Well Logging. United States Patent Office 3.242.422 (1966)

    Google Scholar 

  69. Bloembergen N. Quantum Mechanical Counters. United States Patent Office 3.070.698 (1962)

    Google Scholar 

  70. Letter from N Bloembergen to G Gloudemans, 31 March 1961

    Google Scholar 

  71. Letter from JP Simons to N Bloembergen, 12 May 1969

    Google Scholar 

  72. Interview Rob Herber with D and N Bloembergen, 7 December 2006

    Google Scholar 

  73. Bloembergen N, Royce EB. Electric Shift of the Cr3+ Magnetic Resonance in Ruby. In: Low W (ed) Low Symposium on Paramagnetic Resonance. Academic Press, New York, 1963

    Google Scholar 

  74. Bloembergen N. (ed) Encounters in Magnetic Resonances. World Scientific, Singapore, 1996

    Google Scholar 

  75. www.nrao.edu

  76. Beekman G. Vijftig jaar Nederlandse radiosterrenkunde: een verjaardag zonder jarige. (Fifty years of Dutch radio astronomy: a birthday without a birthday) Zenit. April 1999

    Google Scholar 

  77. en.wikipedia.nl

    Google Scholar 

  78. Bloembergen N. (ed) Encounters in Magnetic Resonances. World Scientific, Singapore, 1996

    Google Scholar 

  79. Jelly JV and Cooper BFC. Operational Ruby Maser for Observations at 21 Centimeters with a 60-Foot Radio Telescope. Rev Sci Instrum 32:166–175 (1961)

    Google Scholar 

  80. Bloembergen N. (ed) Encounters in Magnetic Resonances. World Scientific, Singapore, 1996

    Google Scholar 

  81. Penzias AA and Wilson AA. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astroph J 142:419–421(1965)

    Article  Google Scholar 

  82. nobelprize.org/nobel_prizes/physics/laureates/1978/press.html

    Google Scholar 

  83. Bridging the Gap. DARPA. Powered by Ideas. (2005)

    Google Scholar 

  84. Atta RH van, Deitchman SJ and Reed SG. DARPA Technical Accomplishments Volume III. Institute for Defense Analyses. Alexandria, Virginia (1991)

    Google Scholar 

  85. www.radomes.org

  86. Mattson J, Simon M. Pioneers of NMR and Magnetic Resonance in Medicine. The Story of MRI. Dean Books, Jericho, 1996

    Google Scholar 

  87. Dong, Jiang. (2008). The Principle and Application of Maser Navigation. https://arxiv.org/abs/0901.0068

  88. Brumfiel G. Microwave laser fulfills 60 years of promise. Nature News. August 12, 2012

    Google Scholar 

  89. Oxborrow M., Breeze JD, and Alford M. Nature 448:353–356 (2012)

    Article  Google Scholar 

  90. Kragh H. Quantum generations: a history of physics in the twentieth century. Princeton University Press, Princeton, NJ, 1999

    Google Scholar 

  91. Kittel C. Introduction to Solid State Physics. John Wiley. New York (1996). 7th edn

    Google Scholar 

  92. Erwin SE. When is a metal not a metal? Nature 441:295-296 (2006)

    Article  Google Scholar 

  93. Bloembergen N. Electrical Shift in Magnetic Resonance. In: Smith J (ed) Proc XIIth Colloque Ampère 39–57 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Herber .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herber, R. (2019). The Birth of the Maser—Oil and the Milky Way: Applications of the Maser. In: Nico Bloembergen. Springer Biographies. Springer, Cham. https://doi.org/10.1007/978-3-030-25737-8_11

Download citation

Publish with us

Policies and ethics