Skip to main content

A Cognitive Architecture for a Transportation Robotic System

  • Conference paper
  • First Online:
Biologically Inspired Cognitive Architectures 2019 (BICA 2019)

Abstract

Autonomous mobile robots emerged as an important kind of transportation system in warehouses and factories. In this work, we present the use of MECA cognitive architecture in the development of an artificial mind for an autonomous robot responsible for multiple tasks. It is a work in progress, and we still have only preliminary results. Future work will present a more detailed account of the architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adinandra, S., Caarls, J., Kostić, D., Verriet, J., Nijmeijer, H.: Flexible transportation in warehouses. Automation in warehouse development, pp. 191–207. Springer, London (2012)

    Chapter  Google Scholar 

  2. Avery, E, Kelley, T, Davani, D (2006) Using cognitive architectures to improve robot control: integrating production systems, semantic networks, and sub-symbolic processing. In: 15th annual conference on behavioral representation in modeling and simulation (BRIMS)

    Google Scholar 

  3. Benjamin, DP, Lyons, DM, Lonsdale, DW: Adapt: a cognitive architecture for robotics. In: ICCM, pp. 337–338 (2004)

    Google Scholar 

  4. Burghart, C, Mikut, R, Stiefelhagen, R, Asfour, T, Holzapfel, H, Steinhaus, P, Dillmann, R (2005) A cognitive architecture for a humanoid robot: a first approach. In: 5th IEEE-RAS international conference on humanoid robots, 2005, IEEE, pp. 357–362

    Google Scholar 

  5. Franklin, S., Madl, T., D’mello, S., Snaider, J.: Lida: a systems-level architecture for cognition, emotion, and learning. IEEE Trans Auton Ment Dev 6(1), 19–41 (2014)

    Article  Google Scholar 

  6. Gudwin, R., Paraense, A., de Paula, S.M., Fróes, E., Gibaut, W., Castro, E., Figueiredo, V., Raizer, K.: The multipurpose enhanced cognitive architecture (meca). Biol Inspir Cogn Arc 22, 20–34 (2017)

    Google Scholar 

  7. Gudwin, R., Paraense, A., de Paula, S.M., Fróes, E., Gibaut, W., Castro, E., Figueiredo, V., Raizer, K.: An urban traffic controller using the meca cognitive architecture. Biol Inspir Cogn Arc 26, 41–54 (2018)

    Google Scholar 

  8. Kelley, T.D.: Developing a psychologically inspired cognitive architecture for robotic control: The symbolic and subsymbolic robotic intelligence control system (ss-rics). Int J Adv Rob Syst 3(3), 32 (2006)

    Article  Google Scholar 

  9. Laird, J.E.: The soar cognitive architecture. MIT Press, Cambridge (2012)

    Book  Google Scholar 

  10. Lemaignan, S, Ros, R, Mösenlechner, L, Alami, R, Beetz, M (2010) Oro, a knowledge management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, IEEE, pp. 3548–3553

    Google Scholar 

  11. Paraense, A.L.O., Raizer, K., de Paula, S.M., Rohmer, E., Gudwin, R.R.: The cognitive systems toolkit and the cst reference cognitive architecture. Biol Inspir Cogn Arc 17, 32–48 (2016)

    Google Scholar 

  12. Raizer, K., Paraense, A.L.O., Gudwin, R.R.: A cognitive architecture with incremental levels of machine consciousness inspired by cognitive neuroscience. Int J Mach Conscious 04(02), 335–352 (2012). http://www.worldscientific.com/doi/abs/10.1142/S1793843012400197

    Article  Google Scholar 

  13. Rohmer, E, Singh, SP, Freese, M (2013) V-rep: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp. 1321–1326

    Google Scholar 

  14. Sun, R (2003) A tutorial on clarion 5.0, Unpublished manuscript

    Google Scholar 

  15. Thórisson, K., Helgasson, H.: Cognitive architectures and autonomy: a comparative review. J Artif Gen Intell 3(2), 1–30 (2012)

    Article  Google Scholar 

  16. Trafton, J.G., Hiatt, L.M., Harrison, A.M., Tamborello II, F.P., Khemlani, S.S., Schultz, A.C.: Act-r/e: an embodied cognitive architecture for human-robot interaction. J Hum-Robot Interact 2(1), 30–55 (2013)

    Article  Google Scholar 

  17. Ziemke, T., Lowe, R.: On the role of emotion in embodied cognitive architectures: from organisms to robots. Cogn computat 1(1), 104–117 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ericsson Research Brazil, Ericsson Telecomunicações S.A. Brazil (Proc. FUNCAMP 4881.7) and CEPID/BRAINN (Proc. FAPESP 2013/07559-3) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gudwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gudwin, R. et al. (2020). A Cognitive Architecture for a Transportation Robotic System. In: Samsonovich, A. (eds) Biologically Inspired Cognitive Architectures 2019. BICA 2019. Advances in Intelligent Systems and Computing, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-030-25719-4_15

Download citation

Publish with us

Policies and ethics