Skip to main content

Immunoepidemiology of Mycobacterium tuberculosis

  • Chapter
  • First Online:
Immunoepidemiology
  • 850 Accesses

Abstract

Mycobacterium tuberculosis (MTB) is the number one cause of death from an infectious agent in the world, and about a quarter of the global population has latent MTB. Among people carrying infection, about 10% will progress to active disease, and 20% of these will have infection spreading beyond the lungs. The mechanisms underlying this clinical diversity have been an area of interest for decades, and a number of contributing factors have been discovered. This chapter explores the immunoepidemiology of MTB through discussions of foundational immunology and associated risk factors that influence disease presentation. Specifically, we examine how regional infectious diseases interact with the human immune system and influence its response to MTB. We discuss the role of nutrition and nutrient response in host defense through a case study of vitamin D and its receptor. We highlight important inherited immunological diversity through the example of human leukocyte antigens (HLA). Finally, we discuss how polymorphisms in the human genome can alter the activity of critical immune proteins and explain some of the disease diversities observed in MTB. Overall, the immunoepidemiology of MTB provides a framework for discussions of molecular medicine and how it has deepened our understanding of disease phenotype. In time, we expect this knowledge will inform a medical future where detailed genetic information can contribute to targeted prognostics and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References Cited

  1. WHO | Global tuberculosis report 2017. WHO. 2017 [cited 2018 Mar 23]. Available from: http://www.who.int/tb/publications/global_report/en/.

  2. Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13(10):e1002152.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45(10):1176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primer. 2016;2:16076.

    Article  Google Scholar 

  5. Levy S. The Evolution of TuberculosisGenetic analysis offers new insight on the spread of an ancient disease. Bioscience. 2012;62(7):625–9.

    Article  Google Scholar 

  6. Yao J, Leng L, Sauler M, Fu W, Zheng J, Zhang Y, et al. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus. J Clin Invest. 2016;126(2):732–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhong X, Leng L, Beitin A, Chen R, McDonald C, Hsiao B, et al. Simultaneous detection of microsatellite repeats and SNPs in the macrophage migration inhibitory factor (MIF) gene by thin-film biosensor chips and application to rural field studies. Nucleic Acids Res. 2005;33(13):e121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Awandare GA, Martinson JJ, Were T, Ouma C, Davenport GC, Ong’echa JM, et al. Macrophage Migration Inhibitory Factor (MIF) promoter polymorphisms and susceptibility to severe malarial anemia. J Infect Dis. 2009;200(4):629–37.

    Article  CAS  PubMed  Google Scholar 

  9. Ma M, Tao L, Liu A, Liang Z, Yang J, Peng Y, et al. Macrophage migration inhibitory factor-794 CATT microsatellite polymorphism and risk of tuberculosis: a meta-analysis. Biosci Rep. 2018;38(4):BSR20171626.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Areeshi MY, Mandal RK, Dar SA, Jawed A, Wahid M, Lohani M, et al. MIF -173 G > C (rs755622) gene polymorphism modulates tuberculosis risk: evidence from a meta-analysis and trial sequential analysis. Sci Rep. 2017;7(1):17003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Reid D, Shenoi S, Singh R, Wang M, Patel V et al. Low expression macrophage migration inhibitory factor alleles and tuberculosis in HIV infected South Africans. Cytokine: X. 2019 Feb 11; 100004.

    Google Scholar 

  12. Das R, Koo M-S, Kim BH, Jacob ST, Subbian S, Yao J, et al. Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2013;110(32):E2997–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012;8(2):e1002464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cantwell MF, Snider DE, Cauthen GM, Onorato IM. Epidemiology of tuberculosis in the United States, 1985 through 1992. JAMA. 1994;272(7):535–9.

    Article  CAS  PubMed  Google Scholar 

  15. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163(9):1009–21.

    Article  PubMed  Google Scholar 

  16. Rosas-Taraco AG, Arce-Mendoza AY, Caballero-Olín G, Salinas-Carmona MC. Mycobacterium tuberculosis upregulates coreceptors CCR5 and CXCR4 while HIV modulates CD14 favoring concurrent infection. AIDS Res Hum Retrovir. 2006;22(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  17. Mesfin YM, Hailemariam D, Biadglign S, Kibret KT. Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis. PLoS One. 2014;9(1):e82235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Frieden TR, Sherman LF, Maw KL, Fujiwara PI, Crawford JT, Nivin B, et al. A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA. 1996;276(15):1229–35.

    Article  CAS  PubMed  Google Scholar 

  19. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekaran S, Padmapriyadarsini C, Swaminathan S, et al. Malabsorption of rifampin and isoniazid in HIV-infected patients with and without tuberculosis. Clin Infect Dis. 2004;38(2):280–3.

    Article  CAS  PubMed  Google Scholar 

  20. Leonard MK, Larsen N, Drechsler H, Blumberg H, Lennox JL, Arrellano M, et al. Increased survival of persons with tuberculosis and human immunodeficiency virus infection, 1991--2000. Clin Infect Dis. 2002;34(7):1002–7.

    Article  PubMed  Google Scholar 

  21. Cegielski JP, Arab L, Cornoni-Huntley J. Nutritional risk factors for tuberculosis among adults in the United States, 1971–1992. Am J Epidemiol. 2012;176(5):409–22.

    Article  PubMed  Google Scholar 

  22. Khiria LS, Narwaria M. Tuberculosis after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Surg Obes Relat Dis. 2011;7(3):323–5.

    Article  PubMed  Google Scholar 

  23. Grobler L, Nagpal S, Sudarsanam TD, Sinclair D. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst Rev. 2016;6:1–195.

    Google Scholar 

  24. Martineau AR, Wilkinson KA, Newton SM, Floto RA, Norman AW, Skolimowska K, et al. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol. 2007;178(11):7190–8.

    Article  CAS  PubMed  Google Scholar 

  25. Ustianowski A, Shaffer R, Collin S, Wilkinson RJ, Davidson RN. Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. J Infect. 2005;50(5):432–7.

    Article  CAS  PubMed  Google Scholar 

  26. Martineau AR, Nhamoyebonde S, Oni T, Rangaka MX, Marais S, Bangani N, et al. Reciprocal seasonal variation in vitamin D status and tuberculosis notifications in Cape Town, South Africa. Proc Natl Acad Sci U S A. 2011;108(47):19013–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maceda EB, Gonçalves CCM, Andrews JR, Ko AI, Yeckel CW, Croda J. Serum vitamin D levels and risk of prevalent tuberculosis, incident tuberculosis and tuberculin skin test conversion among prisoners. Sci Rep. 2018;8(1):997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Arnedo-Pena A, Juan-Cerdán JV, Romeu-García MA, García-Ferrer D, Holguín-Gómez R, Iborra-Millet J, et al. Vitamin D status and incidence of tuberculosis infection conversion in contacts of pulmonary tuberculosis patients: a prospective cohort study. Epidemiol Infect. 2015;143(8):1731–41.

    Article  CAS  PubMed  Google Scholar 

  29. Talat N, Perry S, Parsonnet J, Dawood G, Hussain R. Vitamin D deficiency and tuberculosis progression. Emerg Infect Dis. 2010;16(5):853–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sutaria N, Liu C-T, Chen TC. Vitamin D status, receptor gene polymorphisms, and supplementation on tuberculosis: a systematic review of case-control studies and randomized controlled trials. J Clin Transl Endocrinol. 2014;1(4):151–60.

    PubMed  PubMed Central  Google Scholar 

  31. Chen C, Liu Q, Zhu L, Yang H, Lu W. Vitamin D receptor gene polymorphisms on the risk of tuberculosis, a meta-analysis of 29 case-control studies. PLoS One. 2013;8(12):e83843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Martineau AR, Timms PM, Bothamley GH, Hanifa Y, Islam K, Claxton AP, et al. High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet. 2011;377(9761):242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meyer CG, Thye T. Host genetic studies in adult pulmonary tuberculosis. Semin Immunol. 2014;26(6):445–53.

    Article  CAS  PubMed  Google Scholar 

  34. Kettaneh A, Seng L, Tiev KP, Tolédano C, Fabre B, Cabane J. Human leukocyte antigens and susceptibility to tuberculosis: a meta-analysis of case-control studies. Int J Tuberc Lung Dis. 2006;10(7):717–25.

    CAS  PubMed  Google Scholar 

  35. Vijaya Lakshmi V, Rakh SS, Anu Radha B, Hari Sai Priya V, Pantula V, Jasti S, et al. Role of HLA-B51 and HLA-B52 in susceptibility to pulmonary tuberculosis. Infect Genet Evol. 2006;6(6):436–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, Kristinsson KG, Gottfredsson M, Barrett JC, et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet. 2016;48(3):318–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salie M, van der Merwe L, Möller M, Daya M, Spuy VD, D G, et al. Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. J Infect Dis. 2014;209(2):216–23.

    Article  CAS  PubMed  Google Scholar 

  38. Wamala D, Buteme HK, Kirimunda S, Kallenius G, Joloba M. Association between human leukocyte antigen class II and pulmonary tuberculosis due to Mycobacterium tuberculosis in Uganda. BMC Infect Dis. 2016;16:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. de LDS, Ogusku MM, dos SMP, Silva CM de M, de AVA, Antunes IA, et al. Alleles of HLA-DRB1∗04 associated with pulmonary tuberculosis in Amazon Brazilian population. PLoS One. 2016;11(2):e0147543.

    Article  CAS  Google Scholar 

  40. Zhang Y, Jiang T, Yang X, Xue Y, Wang C, Liu J, et al. Toll-like receptor −1, −2, and −6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis. PLoS One. 2013;8(5):e63357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nahid P, Jarlsberg LG, Kato-Maeda M, Segal MR, Osmond DH, Gagneux S, et al. Interplay of strain and race/ethnicity in the innate immune response to M. tuberculosis. PLoS One. 2018;13(5):e0195392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Horton KC, MacPherson P, Houben RMGJ, White RG, Corbett EL. Sex differences in tuberculosis burden and notifications in low- and middle-income countries: a systematic review and meta-analysis. PLoS Med. 2016;13(9):e1002119.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salie M, Daya M, Lucas LA, Warren RM, van der Spuy GD, van Helden PD, et al. Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. Infect Genet Evol. 2015;34:221–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yi Y-X, Han J-B, Zhao L, Fang Y, Zhang Y-F, Zhou G-Y. Tumor necrosis factor alpha gene polymorphism contributes to pulmonary tuberculosis susceptibility: evidence from a meta-analysis. Int J Clin Exp Med. 2015;8(11):20690–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaluza W, Reuss E, Grossmann S, Hug R, Schopf RE, Galle PR, et al. Different transcriptional activity and in vitro TNF-alpha production in psoriasis patients carrying the TNF-alpha 238A promoter polymorphism. J Invest Dermatol. 2000;114(6):1180–3.

    Article  CAS  PubMed  Google Scholar 

  46. Louis E, Franchimont D, Piron A, Gevaert Y, Schaaf-Lafontaine N, Roland S, et al. Tumour necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol. 1998;113(3):401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Webster AS, Shandera WX. The extrapulmonary dissemination of tuberculosis: a meta-analysis. Int J Mycobacteriol. 2014;3(1):9–16.

    Article  PubMed  Google Scholar 

  48. Boisson-Dupuis S, Baghdadi JE, Parvaneh N, Bousfiha A, Bustamante J, Feinberg J, et al. IL-12Rβ1 deficiency in two of fifty children with severe tuberculosis from Iran, Morocco, and Turkey. PLoS One. 2011;6(4):e18524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alangari AA, Al-Zamil F, Al-Mazrou A, Al-Muhsen S, Boisson-Dupuis S, Awadallah S, et al. Treatment of disseminated mycobacterial infection with high-dose IFN-γ in a patient with IL-12Rβ1 deficiency. Clin Dev Immunol. 2011;2011:1.

    Article  CAS  Google Scholar 

  50. Vallinoto ACR, Graça ES, Araújo MS, Azevedo VN, Cayres-Vallinoto I, Machado LFA, et al. IFNG +874T/A polymorphism and cytokine plasma levels are associated with susceptibility to Mycobacterium tuberculosis infection and clinical manifestation of tuberculosis. Hum Immunol. 2010;71(7):692–6.

    Article  CAS  PubMed  Google Scholar 

  51. López-Maderuelo D, Arnalich F, Serantes R, González A, Codoceo R, Madero R, et al. Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med. 2003;167(7):970–5.

    Article  PubMed  Google Scholar 

  52. Browne SK, Burbelo PD, Chetchotisakd P, Suputtamongkol Y, Kiertiburanakul S, Shaw PA, et al. Adult-onset immunodeficiency in Thailand and Taiwan. NEJM. 2012;367:725–34.

    Article  CAS  PubMed  Google Scholar 

  53. Pedraza-Sánchez S, Lezana-Fernández JL, Gonzalez Y, Martínez-Robles L, Ventura-Ayala ML, Sadowinski-Pine S, et al. Disseminated tuberculosis and chronic mucocutaneous candidiasis in a patient with a gain-of-function mutation in signal transduction and activator of transcription 1. Front Immunol. 2017;8:1651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wang J, Zhan X-L, Liu C, Zhang D, Meng L, Deng LMIF. TGF-β1, IFN-γ and NRAMP1 gene polymorphisms in relation to the clinicopathological profile of spinal tuberculosis in Chinese Han population. Int J Clin Exp Path. 2016;9(4):4438–47.

    CAS  Google Scholar 

  55. Caws M, Thwaites G, Dunstan S, Hawn TR, Thi Ngoc Lan N, Thuong NTT, et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog. 2008;4(3):e1000034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Reference Reviews

  • Dorman SE, Holland SM. Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev. 2000;11(4):321–33.

    Article  CAS  PubMed  Google Scholar 

  • Meyer CG, Thye T. Host genetic studies in adult pulmonary tuberculosis. Semin Immunol. 2014;26(6):445–53.

    Article  CAS  PubMed  Google Scholar 

  • Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primer. 2016;2:16076.

    Article  Google Scholar 

  • Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012;8(2)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster AS, Shandera WX. The extrapulmonary dissemination of tuberculosis: a meta-analysis. Int J Mycobacteriol. 2014;3(1):9–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Bucala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odio, C.D., Bucala, R.J. (2019). Immunoepidemiology of Mycobacterium tuberculosis. In: Krause, P., Kavathas, P., Ruddle, N. (eds) Immunoepidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-25553-4_9

Download citation

Publish with us

Policies and ethics