Skip to main content

Fungal Enzymes for Bioconversion of Lignocellulosic Biomass

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

In the courtyard of the twenty-first century, when global climate change was devouring the entire human civilization, the most desirable necessity is the production of various value-added products from the plant’s lignocellulosic biomass, which is the world’s largest warehouse of renewable resources. Understanding the variety of microorganisms-based biodegradation of lignocellulosic biomass in nature made its intrinsic potentiality to be useful in industrial sector as never-ending raw materials for fermentative production of ligninases, cellulases, hemicellulases, and pectinases. From the beginning of the twentieth century, lignocellulosic biomass of plants showed its importance as a major cost-effective substrate for solid-state fermentation for the synthesis array of enzymes which are utilized for the production of varieties of value-added products in an environment-friendly manner. Gradually these enzymes substituted harsh chemicals in industrial, commercial, and household sectors. It is the only doorway for us to keep our earth survivable for our future generation. In the present deliberation, revising of the fungal enzymes associated with lignocellulosic biomass degradation was made along with their possible industrial implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar M (1994) Biomechanical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung 48(3):199–202

    Article  CAS  Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. John Wiley Sons. Inc., New York, p 868

    Google Scholar 

  • Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem 33(1):21–28

    Article  CAS  Google Scholar 

  • Archibald FS, Bourbonnais R, Jurasek L, PaiceMG RID (1997) Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol 53:215–336

    Article  CAS  Google Scholar 

  • Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P (2003) Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Org Biomol Chem 1:191–197

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Pro 15(2):147–157

    Article  CAS  Google Scholar 

  • Bajpai P, Bajpai PK (1992) Biobleaching of kraft pulp. Process Biochem 27(6):319–325

    Article  CAS  Google Scholar 

  • Baker RA, Wicker L (1996) Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol 7(9):279–284

    Article  CAS  Google Scholar 

  • Bala P, Malik R, Srinivas B (2009) Effect of fortifying concentrate supplement with fibrolytic enzymes on nutrient utilization, milk yield and composition in lactating goats. Anim Sci J 80(3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Balakshin M, Capanema E, Gracz H, Chang HM, Jameel H (2011) Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233(6):1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Banu AR, Devi MK, Gnanaprabhal GR, Pradeep BV, Palaniswamy M (2010) Production and characterization of pectinase enzyme from Penicillium chrysogenum. Indian J Sci Technol 3(4):377–381

    CAS  Google Scholar 

  • Bedford MR, Classen HL (1993) An in vitro assay for prediction of broiler intestinal viscosity and growth when fed rye-based diets in the presence of exogenous enzymes. Poult Sci 72(1):137–143

    Article  CAS  PubMed  Google Scholar 

  • Bedford MR, Morgan AJ, Clarkson K, Schulze HK (1997) U.S. Patent No. 5,612,055. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Beg Q, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338

    Article  CAS  PubMed  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    Article  CAS  PubMed  Google Scholar 

  • Belancic A, Scarpa J, Peirano A, Diaz R, Steiner J, Eyzayuirre J (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol 41:71–79

    Article  CAS  PubMed  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  PubMed  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15(3–4):583–620

    Article  CAS  PubMed  Google Scholar 

  • Bholay AD, Borkhataria BV, Jadhav PU, Palekar KS, Dhalkari MV, Nalawade PM (2012) Bacterial lignin peroxidase: a tool for biobleaching and biodegradation of industrial effluents. Univers J Environ Res Technol 2(1)

    Google Scholar 

  • Biz A, Finkler ATJ, Pitol LO, Medina BS, Krieger N, Mitchell DA (2016) Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochem Eng J 111:54–62

    Article  CAS  Google Scholar 

  • Blagoveschenski AV, Yurgenson MP (1935) On the changes of wheat proteins under the action of flour and yeast enzymes. Biochem J 29(4):805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchette RA (1984) Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol 48(3):647–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolli A, Galluzzo P, Ascenzi P, Del Pozzo G, Manco I, Vietri MT, Marino M (2008) Laccase treatment impairs bisphenol A-induced cancer cell proliferation affecting estrogen receptor α-dependent rapid signals. IUBMB Life 60(12):843–852

    Article  CAS  PubMed  Google Scholar 

  • Bonnin E, Le Goff A, Saulnier L, Chaurand M, Thibault JF (1998) Preliminary characterisation of endogenous wheat arabinoxylan-degrading enzymic extracts. J Cereal Sci 28(1):53–62

    Article  CAS  Google Scholar 

  • Bourbonnais R, Leech D, Paice MG (1998) Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta 1379:381–390

    Article  CAS  PubMed  Google Scholar 

  • Braconnot H (1825) Recherches sur un nouvel acide universellement répandu dans tous les végétaux. Ann Chim Phys 28(2):173–178

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2016) Biochemistry and molecular biology of plants. John Wiley Sons, Hoboken, NJ

    Google Scholar 

  • Buchert J, Oksanen T, Pere J, Siika-Aho M, Suurnäkki A, Viikari L (1998) Applications of Trichoderma reesei enzymes in the pulp and paper industry. Trichoderma Gliocladium 2:343–363

    CAS  Google Scholar 

  • Burton SG (2003) Laccases and phenol oxidases in organic synthesis: a review. Curr Org Chem 7(13):1317–1331

    Article  CAS  Google Scholar 

  • Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugarcane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103(6):2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Zheng L, Chen S (1992) Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enz Microbial Technol 14(12):1013–1016

    Article  CAS  Google Scholar 

  • Cesar T, Mrša V (1996) Purification and properties of the xylanase produced by Thermomyces lanuginosus. Enz Microbial Technol 19(4):289–296

    Article  CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci: Processes Impacts 17(2):326–342

    CAS  Google Scholar 

  • Chawachart N, Khanongnuch C, Watanabe T, Lumyong S (2004) Rice bran as an efficient substrate for laccase production from thermotolerant basidiomycete Coriolus versicolor strain RC3. Fungal Divers 15:23–32

    Google Scholar 

  • Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose. Springer, Dordrecht, pp 25–71

    Chapter  Google Scholar 

  • Chen Y, Wan J, Zhang X, Ma Y, Wang Y (2012) Effect of beating on recycled properties of unbleached eucalyptus cellulose fiber. Carbohydr Polym 87(1):730–736

    Article  CAS  PubMed  Google Scholar 

  • Choudhari SM, Ananthanarayan L (2007) Enzyme aided extraction of lycopene from tomato tissues. Food Chem 102(1):77–81

    Article  CAS  Google Scholar 

  • Christakopoulos P, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1996) Purification and characterisation of a major xylanase with cellulase and transferase activities from Fusarium oxysporum. Carbohydr Res 289:91–104

    Article  CAS  PubMed  Google Scholar 

  • Coll PM, Tabernero C, Santamaria R, Perez P (1993) Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic basidiomycete PM1 (CECT 2971). Appl Environ Microbiol 59:4129–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23

    Article  CAS  PubMed  Google Scholar 

  • Corral OL, Villaseñor-Ortega F (2006) Xylanases. Adv Agric Food Biotechnol:305–322

    Google Scholar 

  • Coughlan GP, Hazlewood MP (1993) β-1,4-D-xylan-degrading enzyme system: biochemistry, molecular biology, and applications. Biotechnol Appl Biochem 17:259–289

    CAS  PubMed  Google Scholar 

  • Coughlan MP (1989) Enzyme systems for lignocellulose degradation. Elsevier, New York, NY

    Google Scholar 

  • Couri S, da Costa TS, Pinto GAS, Freitas SP, da Costa ACA (2000) Hydrolytic enzyme production in solid-state fermentation by Aspergillus niger 3T5B8. Process Biochem 36(3):255–261

    Article  CAS  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread- making. J Cereal Sci 35:225–243

    Article  CAS  Google Scholar 

  • Cowan WD (1996) Animal feed, Industrial Enzymology, red. T. Godfrey, S. West (Eds.). 2nd edn, Macmillan Press, Nature Publishing Group, London, pp: 360–371

    Google Scholar 

  • Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi (No. 1258). US Department of Agriculture

    Google Scholar 

  • De Carvalho LMJ, De Castro IM, Da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro-and ultra-filtration. J Food Eng 87(4):447–454

    Article  CAS  Google Scholar 

  • De Castro AM, Ferreira MC, Da Cruz JC, Pedro KCNR, Carvalho DF, Leite SGF, Pereira N (2010) High-yield endoglucanase production by Trichoderma harzianum IOC-3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res:854526. https://doi.org/10.4061/2010/854526

  • Demir H, Göğüş N, Tari C, Heerd D, Lahore MF (2012) Optimization of the process parameters for the utilization of orange peel to produce polygalacturonase by solid-state fermentation from an Aspergillus sojae mutant strain. Turk J Biol 36(4):394–404

    CAS  Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102(10):6065–6072

    Article  CAS  PubMed  Google Scholar 

  • Dhiman SS, Garg G, Mahajan R, Garg N, Sharma J (2009) ‘Single lay out’ and ‘mixed lay out’ enzymatic processes for bio-bleaching of kraft pulp. Bioresour Technol 100(20):4736–4741

    Article  CAS  PubMed  Google Scholar 

  • Dominguez JM (1998) Xylitol production by free and immobilized Debaryomyces hansenii. Biotechnol Lett 20(1):53–56

    Article  CAS  Google Scholar 

  • Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98(12):2369–2385

    Article  PubMed  CAS  Google Scholar 

  • Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35(4):275–282

    Article  CAS  PubMed  Google Scholar 

  • Edwards MC, Doran-Peterson J (2012) Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol 95(3):565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Fakharany EM, Haroun BM, Ng TB, Redwan ER (2010) Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett 17(8):1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Erb-Downward JR, Noggle RM, Williamson PR, Huffnagle GB (2008) The role of laccase in prostaglandin production by Cryptococcus neoformans. Mol Microbiol 68(6):1428–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbrini M, Galli C, Gentili P (2002) Comparing the catalytic efficiency of some mediators of laccase. J Mol Catal 16:231–240

    Article  CAS  Google Scholar 

  • Fähnrich P, Irrgang K (1981) Cellulase and protein production by Chaetomium cellulolyticum strains grown on cellulosic substrates. Biotechnol Lett 3(5):201–206

    Article  Google Scholar 

  • Faik A (2010) Xylan biosynthesis: news from the grass. Plant Physiol 153(2):396–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang TJ, Liao BC, Lee SC (2010) Enhanced production of xylanase by Aspergillus carneus M34 in solid-state fermentation with agricultural waste using statistical approach. New Biotechnol 27(1):25–32

    Article  CAS  Google Scholar 

  • Fang Z, Liu X, Chen L, Shen Y, Zhang X, Fang W, Xiao Y (2015) Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production. Biotechnol Biofuels 8(1):54. https://doi.org/10.1186/s13068-015-0235-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Fontaine S, Bardoux G, Benest D, Verdier B, Mariotti A, Abbadie L (2004) Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Sci Soc Am J 68(1):125–131

    Article  CAS  Google Scholar 

  • Fooks LJ, Gibson GR (2002) In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol Ecol 39:67–75

    Article  CAS  PubMed  Google Scholar 

  • Fortun-Lamothe L, Gidenne T, Debray L, Chalaye F (2001) Intake regulation, performances and health status according to feeding strategy around weaning. In Proceedings of the 2nd Meeting of workgroup 3, pp. 40–41

    Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40(1):1–11

    Article  CAS  Google Scholar 

  • Gaitan IJ, Medina SC, González JC, Rodríguez A, Espejo ÁJ, Osma JF, Sánchez OF (2011) Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresour Technol 102(3):3632–3635

    Article  CAS  PubMed  Google Scholar 

  • Galante Y, De Conti A, Monteverdi R (1998) Application of Trichoderma enzymes in food and feed industries. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium–Enzymes. Biological control and commercial applications, pp 327–342

    Google Scholar 

  • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. In: Biofuels. Springer, Berlin, Heidelberg, pp 303–327

    Chapter  Google Scholar 

  • Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3. Biotech 6(1):47. https://doi.org/10.1007/s13205-016-0371-4

    Article  CAS  Google Scholar 

  • Geng S, Xu C, Li Y (2003) Advance in biosynthesis of lignin and its regulation. Acta Botan Boreali-Occiden Sin 23(1):171–181

    CAS  Google Scholar 

  • Gilbertson RL (1980) Wood-rotting fungi of North America. Mycologia 72(1):1–49

    Article  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242(2):329–341

    Article  CAS  PubMed  Google Scholar 

  • Goswami GK, Rawat S (2015) Microbial xylanase and their applications-a review. Int J Curr Res Aca Rev 3:436–450

    CAS  Google Scholar 

  • Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS (2016) Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16(1):1–16

    Article  CAS  Google Scholar 

  • Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100(3):1214–1220

    Article  CAS  PubMed  Google Scholar 

  • Hadj-Taieb N, Ayadi M, Trigui S, Bouabdallah F, Gargouri A (2002) Hyperproduction of pectinase activities by a fully constitutive mutant (CT1) of Penicillium occitanis. Enz Microbial Technol 30(5):662–666

    Article  CAS  Google Scholar 

  • Hamer RJ (1995) Enzymes in the baking industry. In: Enzymes in food processing. Springer, Boston, MA, pp 190–222

    Chapter  Google Scholar 

  • Han W, He M (2010) The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresour Technol 101(10):3724–3731

    Article  CAS  PubMed  Google Scholar 

  • Harris ZL, Davis-Kaplan SR, Gitlin JD, Kaplan J (2004) A fungal multicopper oxidase restores iron homeostasis in aceruloplasminemia. Blood 103(12):4672–4673

    Article  CAS  PubMed  Google Scholar 

  • Hebeish A, Ibrahim NA (2007) The impact of frontier sciences on textile industry. Colourage 54(4):41–55

    Google Scholar 

  • Hekkert MP, Negro SO (2009) Functions of innovation systems as a framework to understand sustainable technological change: empirical evidence for earlier claims. Technol Forecast Soc Change 76(4):584–594

    Article  Google Scholar 

  • Highley TL (1977) Degradation of cellulose by culture filtrates of Poria placenta. Mater Org 12:161–174

    Google Scholar 

  • Hu DD, Zhang RY, Zhang GQ, Wang HX, Ng TB (2011) A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea. Phytomedicine 18(5):374–379

    Article  CAS  PubMed  Google Scholar 

  • Huertas MG, Zárate L, Acosta IC, Posada L, Cruz DP, Lozano M, Zambrano MM (2014) Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility. Microbiology 160(12):2595–2606

    Article  CAS  PubMed  Google Scholar 

  • Humpf HU, Schreier P (1991) Bound aroma compounds from the fruit and the leaves of blackberry (Rubus laciniata L.). J Agric Food Chem 39(10):1830–1832

    Article  CAS  Google Scholar 

  • Ibarra D, Monte MC, Blanco A, Martínez AT, Martínez MJ (2012) Enzymatic deinking of secondary fibers: cellulases/hemicellulases versus laccase-mediator system. J Ind Microbiol Biotechnol 39(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim NA, El-Badry K, Eid BM, Hassan TM (2011) A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydr Polym 83(1):116–121

    Article  CAS  Google Scholar 

  • Irshad M, Anwar Z, Mahmood Z, Aqil T, Mehmmod S, Nawaz H (2014) Bio-processing of agro-industrial waste orange peel for induced production of pectinase by Trichoderma viride; its purification and characterization. Turk J Biochem 39(1):9–18

    Article  CAS  Google Scholar 

  • Jäger A, Croan S, Kirk TK (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50(5):1274–1278

    PubMed  PubMed Central  Google Scholar 

  • Jahan N, Shahid F, Aman A, Mujahid TY, SAU Q (2017) Utilization of agro waste pectin for the production of industrially important polygalacturonase. Heliyon 3(2017):e00330. https://doi.org/10.1016/j.heliyon.2017.e00330

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    Article  CAS  Google Scholar 

  • Jeya M, Moon HJ, Kim SH, Lee JK (2010) Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis. Bioresour Technol 101(22):8742–8749

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enz Microbial Technol 38(3–4):381–390

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227

    Google Scholar 

  • Kalim B, Bohringer N, Ali N, Schaberle TF (2015) Xylanases–from microbial origin to industrial application. Br Biotechnol J 7(1):1–20

    Article  CAS  Google Scholar 

  • Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38(7):1099–1104

    Article  CAS  Google Scholar 

  • Kamei I, Hirota Y, Meguro S (2012a) Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 126:137–141

    Article  CAS  PubMed  Google Scholar 

  • Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R (2012b) Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112:137–142

    Article  CAS  PubMed  Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91(2):153–156

    Article  CAS  PubMed  Google Scholar 

  • Karim MAA, Annuar MSM (2009) Novel application of coconut husk as growth support matrix and natural inducer of fungal laccase production in a bubble column reactor. Asia Pac J Mol Biol Biotechnol 17(2):47–52

    Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41–53

    Article  CAS  Google Scholar 

  • Kaur G, Kumar S, Satyanarayana T (2004) Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94(3):239–243

    Article  CAS  PubMed  Google Scholar 

  • Kazumitsu S, Boseki I, Norio S, Yoshimasa O (1987) Production of food and drink. Japan Patent JP 62278961

    Google Scholar 

  • Kazumitsu S, Boseki I, Norio S, Yoshimasa O (1997) Production of food and drink. Japan Patent JP 9248153

    Google Scholar 

  • Khalil MI, Hoque MM, Basunia MA, Alam N, Khan MA (2011) Production of cellulase by Pleurotus ostreatus and Pleurotus sajor-caju in solid state fermentation of lignocellulosic biomass. Turk J Agric For 35(4):333–341

    CAS  Google Scholar 

  • Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12(1):75–97

    Article  CAS  Google Scholar 

  • Khokhar I, Haider MS, Mushtaq S, Mukhtar I (2012) Isolation and screening of highly cellulolytic filamentous fungi. J Appl Sci Environ Manage 16(3):223–226

    CAS  Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11(11):2075–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie Int Edn 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Kluczek-Turpeinen B, Maijala P, Hofrichter M, Hatakka A (2007) Degradation and enzymatic activities of three Paecilomyces inflatus strains grown on diverse lignocellulosic substrates. Int Biodeterior Biodegradation 59(4):283–291

    Article  CAS  Google Scholar 

  • Koshland Jr DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28(4):416–436

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019a) Technologies for Biofuel Production: current development, challenges, and future prospects. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer, Cham, pp 1–50. https://doi.org/10.1007/978-3-030-14463-0_1

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through Fungi, Perspective for value-added products and environments, vol 2. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kubicek CP, Harman GE (1998) Trichoderma and Gliocladium: enzymes, biological control, and commercial applications. Volume 2. Taylor Francis, London

    Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP (2010) Bioethanol production from lignocellulosic biomass: an overview. Teri Press, New Delhi

    Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enz Res. 280696, 10 pages. https://doi.org/10.4061/2011/280696

  • Kuhad RC, Singh A (2013) Biotechnology for environmental management and resource recovery. Springer, New Delhi, pp 191–218

    Book  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Biotechnology in the pulp and paper industry. Springer, Berlin, Heidelberg, pp 45–125

    Chapter  Google Scholar 

  • Kurisawa M, Chung JE, Uyama H, Kobayashi S (2003) Laccase-catalyzed synthesis and antioxidant property of poly (catechin). Macromol Biosci 3(12):758–764

    Article  CAS  Google Scholar 

  • Kwon KS, Gyoo Kang H, Chil Hah Y (1992) Purification and characterization of two extracellular β-glucosidases from Aspergillus nidulans. FEMS Microbiol Lett 97(1–2):149–153

    CAS  Google Scholar 

  • Lee CK, Darah I, Ibrahim CO (2007) Enzymatic deinking of laser printed office waste papers: some governing parameters on deinking efficiency. Bioresour Technol 98(8):1684–1689

    Article  CAS  PubMed  Google Scholar 

  • Lee CK, Ibrahim D, Ibrahim CO, Daud WRW (2011) Enzymatic and chemical deinking of mixed office wastepaper and old newspaper: paper quality and effluent characteristics. BioResour 6(4):3859–3875

    CAS  Google Scholar 

  • Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L (1997) Yellow laccase of Panus tigrinus oxidises non-phenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448

    Article  CAS  PubMed  Google Scholar 

  • Lewis GE, Hunt CW, Sanchez WK, Treacher R, Pritchard GT, Feng P (1996) Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Anim Sci 74(12):3020–3028

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Li H, Li AN, Li DC (2009) Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol 106(6):1867–1875

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z, Shen Q (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegradation 65(5):717–725

    Article  CAS  Google Scholar 

  • Loiselle M, Anderson KW (2003) The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling 19(2):77–85

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5(3):e1000354. https://doi.org/10.1371/journal.ppat.1000354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4(4):1694–1717

    Google Scholar 

  • Manenoi A, Paull RE (2007) Papaya fruit softening, endoxylanase gene expression, protein and activity. Physiol Plant 131(3):470–480

    Article  CAS  PubMed  Google Scholar 

  • Manimaran A, Kumar KS, Permaul K, Singh S (2009) Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Appl Microbiol Biotechnol 81(5):887–893

    Article  CAS  PubMed  Google Scholar 

  • Marimuthu S, Manivel L, Katreem AA (1997) Hydrolytic enzymes on the quality of made tea. J Plant Crops 25:88–92

    CAS  Google Scholar 

  • Marques De Souza CG, Zilly A, Peralta RM (2002) Production of laccase as the sole phenoloxidase by a Brazilian strain of Pleurotus pulmonarius in solid state fermentation. J Basic Microbiol 42(2):83–90

    Article  CAS  PubMed  Google Scholar 

  • McCarter JD, Withers GS (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4(6):885–892

    Article  CAS  PubMed  Google Scholar 

  • McCrate OA, Zhou X, Reichhardt C, Cegelski L (2013) Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol 425(22):4286–4294

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Gorshkova TA (2011) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63(2):551–565

    Article  PubMed  CAS  Google Scholar 

  • Mester T, Varela E, Tien M (2004) Wood degradation by brown-rot and white-rot fungi. In: Genetics and biotechnology. Springer, Berlin, Heidelberg, pp 355–368

    Chapter  Google Scholar 

  • Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanperä J, Biotec PL (2004) Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enz Microbial Technol 34(3–4):332–341

    Article  CAS  Google Scholar 

  • Milala MA, Shugaba A, Gidado A, Ene AC, Wafar JA (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res J Agric Biol Sci 1(4):325–328

    Google Scholar 

  • Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99(16):7553–7564

    Article  CAS  PubMed  Google Scholar 

  • Moreau RA, Powell MJ, Whitaker BD, Bailey BA, Anderson JD (1994) Xylanase treatment of plant cells induces glycosylation and fatty acylation of phytosterols. Physiol Plant 91(4):575–580

    Article  CAS  Google Scholar 

  • Motta FL, Andrade CCP, Santana MHA (2013) A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. IntechOpen, Chennai, pp 251–275

    Google Scholar 

  • Murthy PS, Naidu MM (2011) Improvement of robusta coffee fermentation with microbial enzymes. Eur J Appl Sci 3:130–139

    Google Scholar 

  • Naing KW, Anees M, Nguyen XH, Lee YS, Jeon SW, Kim SJ, Kim KY (2014) Biocontrol of late blight disease (Phytophthora capsici) of pepper and the plant growth promotion by Paenibacillus ehimensis KWN 38. J Phytopathol 162(6):367–376

    Article  CAS  Google Scholar 

  • Niladevi KN (2009) Ligninolytic enzymes. In biotechnology for agro-industrial residues utilisation. Springer, Dordrecht, pp 397–414

    Book  Google Scholar 

  • Niranjane AP, Madhou P, Stevenson TW (2007) The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enz Microbial Technol 40(6):1464–1468

    Article  CAS  Google Scholar 

  • Ntwampe S, Chowdhury F, Sheldon M, Volschenk H (2010) Overview of parameters influencing biomass and bioreactor performance used for extracellular ligninase production from Phanerochaete chrysosporium. Braz Arch Biol Technol 53(5):1057–1066

    Article  CAS  Google Scholar 

  • Ojumu TV, Solomon BO, Betiku E, Layokun SK, Amigun B (2003) Cellulase production by Aspergillus flavus Linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Afr J Biotechnol 2(6):150–152

    Article  CAS  Google Scholar 

  • Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulase for improving filterability of wort and beer. In: Proceedings of the 20th European brewery chemistry congress; 1985. Helsinki, Finland, pp 419–425

    Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enz Microbial Technol 18(5):312–331

    Article  CAS  Google Scholar 

  • Ong LGA, Abd-Aziz S, Noraini S, Karim MIA, Hassan MA (2004) Enzyme production and profile by Aspergillus niger during solid substrate fermentation using palm kernel cake as substrate. Appl Biochem Biotechnol 118(1–3):73–79

    Article  CAS  PubMed  Google Scholar 

  • Payen A (1938) Memoire sur la composition du tissu propre des plantes et du ligneux. Acad Sci 7:1052–1056

    Google Scholar 

  • Pere J (1995) Effects of purified Trichoderma reesei cellulases on the fiber properties of kraft pulp. TAPPI J 78(6):71–78

    CAS  Google Scholar 

  • Phutela U, Dhuna V, Sandhu S, Chadha BS (2005) Pectinase and polygalacturonase production by a thermophilic Aspergillus fumigatus isolated from decomposting orange peels. Braz J Microbiol 36(1):63–69

    Article  CAS  Google Scholar 

  • Pinos N, Moreno-Merino S, Congregado M (2015) Phytobezoar by aloe vera as long term complication after oesophagectomy resolved using cellulase. Int J Surgery Case Rep 13:37–39

    Article  Google Scholar 

  • Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioproc 2(1):23. https://doi.org/10.1186/s40643-015-0049-5

    Article  Google Scholar 

  • Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8(9):300–306

    Article  Google Scholar 

  • Pozdnyakova NN, Turkovskaya OV, Yudina EN, Rodakiewicz-Nowak Y (2006) Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Appl Biochemand Microbiol 42(1):56–61

    Article  CAS  Google Scholar 

  • Prasad DY, Heitmann JA, Joyce TW (1992) Enzyme deinking of black and white letterpress printed newsprint waste. Prog Paper Recycling 1(3):21–30

    Google Scholar 

  • Praveen KG, Suneetha V (2015) Efficacy of pectinase purified from Bacillus VIT sun-2 and in combination with xylanase and cellulase for the yield and clarification improvement of various culinary juices from South India for pharma and health benefits. Int J Pharmtech Res 7(3):448–452

    Google Scholar 

  • Qin C, Zhou B, Zeng L, Zhang Z, Liu Y et al (2004) The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem 1:107–115

    Article  CAS  Google Scholar 

  • Rai P, Majumdar GC, Gupta SD, De S (2007) Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J Food Eng 78(2):561–568

    Article  CAS  Google Scholar 

  • Rajasekharan SK, Ramesh S (2013) Cellulase inhibits Burkholderia cepacia biofilms on diverse prosthetic materials. Pol J Microbiol 62(3):327–300

    CAS  PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer, Cham

    Book  Google Scholar 

  • Renganathan V, Miki K, Gold MH (1985) Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. Arch Biochem Biophys 241(1):304–314

    Article  CAS  PubMed  Google Scholar 

  • Rodionova NA, Dubovaia NV, Eneĭskaia EV, Martinovich LI, Gracheva IM, Bezborodov AM (2000) Purification and characteristic of endo-(1--4)-beta-xylanase from Geotrichum candidum 3C. Prikl Biokhim Mikrobiol 36(5):535–540

    CAS  PubMed  Google Scholar 

  • Rodrigues MAM, Pinto P, Bezerra RMF, Dias AA, Guedes CVM, Cardoso VMG, Cone JW, Ferreira LMM, Colaco J, Sequeira CA (2008) Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Ani Feed Sci Technol 141(3-4):326–338

    Google Scholar 

  • Romero MD, Aguado J, González L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enz Microbial Technol 25(3–5):244–250

    Article  CAS  Google Scholar 

  • Rosales E, Couto SR, Sanromán MA (2007) Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enz Microbial Technol 40(5):1286–1290

    Article  CAS  Google Scholar 

  • Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39(12):1871–1876

    Article  CAS  Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6(1):461. https://doi.org/10.4172/2155-9600.1000461

    Article  CAS  Google Scholar 

  • Sajith S, Sreedevi S, Priji P, Unni KN, Benjamin S (2014) Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1. Ann Microbiol 64(2):763–771

    Article  CAS  Google Scholar 

  • Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT, Ståhlberg J, Johansson G, Knowles JKC (1988) EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Saparrat MC, Jurado M, Díaz R, Romera IG, Martínez MJ (2010) Transformation of the water soluble fraction from “alpeorujo” by Coriolopsis rigida: the role of laccase in the process and its impact on Azospirillum brasilense survival. Chemosphere 78(1):72–76

    Article  CAS  PubMed  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem E 42(1):138–157

    Article  CAS  Google Scholar 

  • Schmid RD, Urlacher V (2007) Modern biooxidation: enzymes, reactions and applications. John Wiley Sons, Weinhein, Germany

    Google Scholar 

  • Schmidhalter DR, Canevascini G (1992) Characterization of the cellulolytic enzyme system from the brown-rot fungus Coniophora puteana. Appl Microbiol Biotechnol 37(4):431–436

    Article  CAS  Google Scholar 

  • Schmidt B, Heimgartner U, Kozulić B, Leisola MS (1990) Lignin peroxidases are oligomannose type glycoproteins. J Biotechnol 13(2–3):223–228

    Article  CAS  Google Scholar 

  • Schulze E (1891) Information regarding chemical composition of plant cell membrane. Ber Dtsch Chem Ges 24:2277–2287

    Article  Google Scholar 

  • Sharma N, Rathore M, Sharma M (2013) Microbial pectinase: sources, characterization and applications. Rev Environ Sci Biotechnol 12(1):45–60

    Article  CAS  Google Scholar 

  • Shekhar C, Thakur SS, Shelke SK (2010) Effect of exogenous fibrolytic enzymes supplementation on milk production and nutrient utilization in Murrah buffaloes. Trop Anim Health Prod 42(7):1465–1470

    Article  PubMed  Google Scholar 

  • Shinners-Carnelley TC, Szpacenko A, Tewari JP, Palcic MM (2002) Enzymatic activity of Cyathus olla during solid state fermentation of canola roots. Phytoprotection 83(1):31–40

    Article  CAS  Google Scholar 

  • Siddiqui MA, Veena P, Arif M (2013) Polygalacturonase production from Rhizomucor pusillus isolated from fruit markets of Uttar Pradesh. Afr J Microbiol Res 7(3):252–259

    CAS  Google Scholar 

  • Silva D, Martins EDS, Silva RD, Gomes E (2002) Pectinase production by Penicillium viridicatum RFC3 by solid state fermentation using agricultural wastes and agro-industrial by-products. Braz J Microbiol 33(4):318–324

    CAS  Google Scholar 

  • Silva D, Tokuioshi K, da Silva ME, Da Silva R, Gomes E (2005) Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem 40(8):2885–2889

    Article  CAS  Google Scholar 

  • Singh A (1999) Engineering enzyme properties. Ind J Microbiol 39(2):65–77

    Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I.K.International Publishing House, New Delhi, pp 345–358

    Google Scholar 

  • Singh A, Yadav RD, Kaur A, Mahajan R (2012) An ecofriendly cost effective enzymatic methodology for deinking of school waste paper. Bioresour Technol 120:322–327

    Article  CAS  PubMed  Google Scholar 

  • Sixta H (2006) Handbook of pulp. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Sjostrom E (1993) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Houston, TX

    Google Scholar 

  • Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6):437–441

    Article  CAS  Google Scholar 

  • Sreenath HK, Shah AB, Yang VW, Gharia MM, Jeffries TW (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioeng 81(1):18–20

    Article  CAS  Google Scholar 

  • Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn Univ Int J 3(1–2):206–228

    Google Scholar 

  • Sridhar M, Bhatta R, Dhali A, Pradeep VK, Thammiaha V, Senani S (2014) In vitro evaluation of the effect of exogenous lignolytic enzymes on the nutritive value of Eleusine coracana (ragi straw). Adv Appl Res 6(1):45–52

    Article  Google Scholar 

  • Srinivasan C, Dsouza TM, Boominathan K, Reddy CA (1995) Demonstration of Laccase in the white rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 61(12):4274–4277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stalin T, Priya BS, Selvam K (2012) Ecofriendly application of cellulase and xylanase producing marine Streptomyces clavuligerus as enhancer in biogas production from waste. Afr J Environ Sci Technol 6(6):258–262

    Article  CAS  Google Scholar 

  • Stutz C (1993) The use of enzymes in ultrafiltration. Food Proc 3:248–252

    Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64:832

    CAS  Google Scholar 

  • Taeko I, Koichi N, Yasushi N, Akiraand K, Yoshinobu K (1998) Food and drink effective in anti-obesity. Japan Patent JP 10290681

    Google Scholar 

  • Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998) Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J Biotechnol 65(2–3):163–171

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Nakamura A, Masaki H, Uozumi T (1996) Purification and characterization of cellulases from Humicola grisea. Biosci Biotechnol Biochem 60(1):77–82

    Article  CAS  Google Scholar 

  • Tanabe H, Kobayashi Y, Akamatsu I (1986) Pretreatment of pectic wastewater from orange canning by soft-rot Erwinia carotovora. J Ferment Technol 64(3):265–268

    Article  CAS  Google Scholar 

  • Thangaratham T, Manimegalai G (2014) Optimization and production of pectinase using agro waste by solid state and submerged fermentation. Int J Curr Microbiol App Sci 3(9):357–365

    CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221(4611):661–663

    Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Methods in enzymology, vol 161. Academic Press,San Diego, pp 238–249

    Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFA2. Diabetes 61:2364–2371

    Article  CAS  Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37: 1–81

    Google Scholar 

  • Topakas E, Panagiotou G, Christakopoulos P (2013) Xylanases: characteristics, sources, production, and applications. In: Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, New York, pp 147–166

    Chapter  Google Scholar 

  • Toshio I, Noriyoshi I, Toshiaki K, Toshiyuki N, Kunimasa K (1990). Production of Xylobiose. Japan Patent JP 2119790

    Google Scholar 

  • Uhlig H (1998) Industrial enzymes and their applications. John Wiley Sons, New York

    Google Scholar 

  • Umezawa T, Higuchi T (1987) Mechanism of aromatic ring cleavage of β-O-4 lignin substructure models by lignin peroxidase. FEBS Lett 218(2):255–260

    Article  CAS  Google Scholar 

  • Vazquez MJ, Alonso JL, Dominguez H, Parajo JC (2000) Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393

    Article  CAS  Google Scholar 

  • Verma D, Satyanarayana T (2012) Molecular approaches for ameliorating microbial xylanases. Bioresour Technol 117:360–367

    Article  CAS  PubMed  Google Scholar 

  • Viikari L, Tenkanen M, Suurnäkki A (2001) Biotechnology in the pulp and paper industry. In: Biotechnology: Special processes, vol 10. Wiley, Hoboken, pp 523–546

    Google Scholar 

  • Vikso-Nielsen A, Sorensen BH (2015) U.S. Patent No. 9,040,275. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Whitehead TR, Cotta MA (2001) Identification of a broad-specificity xylosidase/arabinosidase important for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonas ruminantium GA 192. Curr Microbiol 43:293–298

    Article  CAS  PubMed  Google Scholar 

  • Wong KK, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12(5–6):413–435

    Article  CAS  Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157(2):174–209

    Google Scholar 

  • Wood TM, McCrae SI (1977) Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydr Res 57:117–133

    Article  CAS  PubMed  Google Scholar 

  • Wu GJ, Tsai GJ (2004) Cellulase degradation of shrimp chitosan for the preparation of a water-soluble hydrolysate with immunoactivity. Fish Sci 70:1113–1120

    Article  CAS  Google Scholar 

  • Ximenes EA, Felix CR, Ulhoa CJ (1996) Production of cellulases by Aspergillus fumigatus and characterization of one β-glucosidase. Curr Microbiol 32(3):119–123

    Article  CAS  Google Scholar 

  • Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272(2):924–928

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017a) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017b) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through Fungi. Volume 1: Diversity and enzymes perspectives. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through Fungi. Volume 2: Perspective for value-added products and environments. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ (2006) High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Bioresour Technol 97(15):1794–1800

    Article  CAS  PubMed  Google Scholar 

  • Yaropolov AI, Skorobogat KOV, Vartanov SS, Varfolomeyev SD (1994) Laccase. Appl Biochem Biotechnol 49(3):257–280

    Article  CAS  Google Scholar 

  • Yoon JJ, Kim YK (2005) Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J Microbiol 43(6):487–492

    CAS  PubMed  Google Scholar 

  • Youn KS, Hong JH, Bae DH, Kim SJ, Kim SD (2004) Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment. J Membrane Sci 228(2):179–186

    Article  CAS  Google Scholar 

  • Zhao J, Mou Y, Shan T, Li Y, Zhou L, Wang M, Wang J (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15(11):7961–7970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Department of Science and Technology and Biotechnology, Govt. of West Bengal, India for financial assistance (Memo No: 532/(Sanc.)\ST/P/S&T/2G-48/2018 dated: 27/03/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumar Halder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Halder, S.K., Mondal, K.C. (2019). Fungal Enzymes for Bioconversion of Lignocellulosic Biomass. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_14

Download citation

Publish with us

Policies and ethics