Skip to main content

Introduction

  • Chapter
  • First Online:
Toward Inertial-Navigation-on-Chip

Part of the book series: Springer Theses ((Springer Theses))

  • 637 Accesses

Abstract

This chapter gives a brief introduction to inertial navigation systems and reviews the development of gyroscopes for inertial measurement and inertial navigation. Particularly, MEMS gyroscopes have received great success in personal electronics applications for self-sustained motion tracking due to their small size and low cost. However, MEMS gyroscopes with robust higher performance that are suitable for emerging applications like health informatics, robotics, industrial guidance, and indoor navigation are still unavailable with current technology, which defines the motivation and purpose of this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Schmidt, INS/GPS technology trends. NATO RTO STO Educational Notes 116(1), 1–24 (2011)

    Google Scholar 

  2. A.D. King, Inertial navigation-forty years of evolution. GEC Rev. 13(3), 140–149 (1998)

    Google Scholar 

  3. M.S. Grewal, L.R. Weill, A.P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration (Wiley, Hoboken, 2007)

    Book  Google Scholar 

  4. E.B. Kaiser, E.B. Kaiser, M. Lawo. Wearable navigation system for the visually impaired and blind people, in 2012 IEEE/ACIS 11th International Conference on Computer and Information Science, (2012), pp. 230–233

    Google Scholar 

  5. B. Barshan, H.F. Durrant-Whyte, Inertial navigation systems for mobile robots. IEEE Trans. Robot. Autom. 11(3), 328–342 (1995)

    Article  Google Scholar 

  6. H. Fourati et al., Posture and body acceleration tracking by inertial and magnetic sensing: application in behavioral analysis of free-ranging animals. Biomed. Signal Process. Control 6(1), 94–104 (2011)

    Article  MathSciNet  Google Scholar 

  7. R. Li et al., A multisensor integration approach toward astronaut navigation for landed lunar missions. J. Field Robotics 31(2), 245–262 (2014)

    Article  ADS  Google Scholar 

  8. L.I. Iozan et al., Using a MEMS gyroscope to measure the Earth’s rotation for gyrocompassing applications. Meas. Sci. Technol. 23(2), 025005 (2012)

    Article  ADS  Google Scholar 

  9. D.H. Eckhardt, Air Force Geophysics Lab Hanscom AFB MA, Surveying and Geophysical Measurements with Inertial Rotation Sensors (Defense Technical Information Center, Ft. Belvoir, 1978)

    Google Scholar 

  10. G.A. Sanders, M.G. Prentiss, S. Ezekiel, Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity. Opt. Lett. 6(11), 569–571 (1981)

    Article  ADS  Google Scholar 

  11. O.J. Woodman, An Introduction to Inertial Navigation (University of Cambridge, Computer Laboratory, Cambridge, UK, 2007)

    Google Scholar 

  12. V. Marotto, et al. Orientation Analysis through a Gyroscope Sensor for Indoor Navigation Systems, in Proceedings of 4th International Conference on Sensor Device Technology Applications, (2013), pp. 85–90

    Google Scholar 

  13. E. Gorczycki, Dynamic considerations relating to the behavior of inertial space-stabilized platforms. J. Aeronaut. Sci. 24(2), 130–138 (1957)

    Article  Google Scholar 

  14. L. Ojeda, J. Borenstein. Personal dead-reckoning system for GPS-denied environments, in 2007 IEEE International Workshop on Safety, Security and Rescue Robotics, (2007), pp. 1–6

    Google Scholar 

  15. C. Randell, C. Djiallis, H. Muller. Personal position measurement using dead reckoning, in Proceedings of the 7th IEEE International Symposium on Wearable Computers (IEEE Computer Society, 2003), pp. 166

    Google Scholar 

  16. D. Titterton, J.L. Weston, Strapdown inertial navigation technology, vol 17 (IET, Stevenage, UK, 2004)

    Book  Google Scholar 

  17. F. Ayazi. Multi-DOF inertial MEMS: from gaming to dead reckoning, in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, (2011), pp. 2805–2808

    Google Scholar 

  18. N. Yazdi, F. Ayazi, K. Najafi, Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)

    Article  Google Scholar 

  19. IMU of lunar modules used in the Apollo missions [Online], Available: http://www.hq.nasa.gov/alsj/lm_imu.gif

  20. R.E. Mandapat, Development and Evaluation of Positioning Systems for Autonomous Vehicle Navigation (University of Florida, Gainesville, FL, USA, 2001)

    Google Scholar 

  21. A.I.U.l.e. IshlinskiÄ­, Mechanics of Gyroscopic Systems: (Mekhanika giroskopicheskikh sistem) (Israel Program for Scientific Translations, 1965); [available from the US Dept. of Commerce, Clearinghouse for Federal Scientific and Tecnical Information, Springfield, VA]

    Google Scholar 

  22. B.A. Shamir, An Overview of Optical Gyroscopes Theory, Practical Aspects, Applications and Future Trends [Online], Available: https://pdfs.semanticscholar.org/3fdb/a8cea7cf6d0cad17b13828970f763e368f43.pdf

  23. This rare photo shows the most sensitive part of a combat aircraft [Online], Available: https://foxtrotalpha.jalopnik.com/this-rare-photo-shows-the-most-sensitive-part-of-a-comb-1627339307

  24. KVH reveals plans to build FOG sensor for self-driving cars [Online], Available: https://insidegnss.com/kvh-reveals-plans-to-build-fog-sensor-for-self-driving-cars/

  25. J. Fang, J. Qin, Advances in atomic gyroscopes: a view from inertial navigation applications. Sensors 12(5), 6331 (2012)

    Article  Google Scholar 

  26. Photo release – Northrop Grumman demonstrates micro-gyro prototype for DARPA program [Online], Available: https://news.northropgrumman.com/news/releases/photo-release-northrop-grumman-demonstrates-micro-gyro-prototype-for-darpa-program

  27. V. Apostolyuk, Coriolis Vibratory Gyroscopes (Springer, Cham, 2016)

    Book  Google Scholar 

  28. D.M. Rozelle. The hemispherical resonator gyro: from wineglass to the planets, in Proceedings of 19th AAS/AIAA Space Flight Mechanics Meeting, (2009), pp. 1157–1178

    Google Scholar 

  29. G.T.A. Kovacs, K. Petersen, M. Albin, Peer reviewed: silicon micromachining: sensors to systems. Anal. Chem. 68(13), 407A–412A (1996)

    Article  Google Scholar 

  30. P. Greiff, et al. Silicon monolithic micromechanical gyroscope, in Solid-State Sensors and Actuators, 1991. Digest of Technical Papers, TRANSDUCERS ’91, 1991 International Conference on, (1991), pp. 966–968

    Google Scholar 

  31. W.A. Clark, R.T. Howe, R. Horowitz. Surface micromachined Z-axis vibratory rate gyroscope, in Technical Digest Solid-State Sensor and Actuator Workshop, (1996), pp. 283–287

    Google Scholar 

  32. J.A. Geen, et al. Single-chip surface-micromachined integrated gyroscope with 50/deg/hour root Allan variance, in 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315), vol. 1, 2002, pp. 426–427

    Google Scholar 

  33. J. Seeger, M. Lim, S. Nasiri. Development of high-performance, high-volume consumer MEMS gyroscopes, in Solid-State Sensors, Actuators, and Microsystems Workshop, (2010), pp. 61–64

    Google Scholar 

  34. Comparing the InvenSense and Bosch accelerometers found in the iPhone 6 [Online], Available: https://www.chipworks.com/about-chipworks/overview/blog/comparing-invensense-and-bosch-accelerometers-found-iphone-6

  35. STM LSM6DSM, iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope [Online], Available: http://www.st.com/en/mems-and-sensors/lsm6dsm.html

  36. InvenSense-IAM-20380 high performance gyroscope [Online], Available: https://www.invensense.com/products/motion-tracking/3-axis/iam-20380/

  37. BOSCH BMG250 low noise, low power triaxial gyroscope [Online], Available: https://www.bosch-sensortec.com/bst/products/all_products/bmg250

  38. ADIS16497 tactical grade, six degrees of freedom inertial sensor [Online], Available: http://www.analog.com/en/products/mems/inertial-measurement-units/adis16497.html

  39. S. Sonmezoglu et al., Single-structure micromachined three-axis gyroscope with reduced drive-force coupling. IEEE Electron Device Lett 36(9), 953–956 (2015)

    Article  ADS  Google Scholar 

  40. S. Wisher, et al. A high-frequency epitaxially encapsulated single-drive quad-mass tri-axial resonant tuning fork gyroscope, in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), (2016), pp. 930–933

    Google Scholar 

  41. A. Efimovskaya, et al. Compact roll-pitch-yaw gyroscope implemented in wafer-level epitaxial silicon encapsulation process, in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), (2017), pp. 1–2

    Google Scholar 

  42. J. Houri, A. Farrokh. High-frequency capacitive disk gyroscopes in (100) and (111) silicon, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), (2007), pp. 47–50

    Google Scholar 

  43. H. Johari, F. Ayazi. Capacitive bulk acoustic wave silicon disk gyroscopes, in 2006 International Electron Devices Meeting, (2006), pp. 1–4

    Google Scholar 

  44. A. Rahafrooz, et al. A 0.5 mm2 7-MHz capacitive bulk acoustic wave gyroscope in (100) silicon with large dynamic range, in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), (2017), pp. 25–28

    Google Scholar 

  45. F. Ayazi, K. Najafi, High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology. J. Microelectromech. Syst. 9(3), 288–294 (2000)

    Article  Google Scholar 

  46. S. Pourkamali, F. Ayazi. SOI-based HF and VHF single-crystal silicon resonators with SUB-100 nanometer vertical capacitive gaps, in TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, vol. 1, (2003), pp. 837–840

    Google Scholar 

  47. D.E. Serrano et al., Substrate-decoupled, bulk-acoustic wave gyroscopes: design and evaluation of next-generation environmentally robust devices. Microsyst. Nanoeng. 2, 16015 (2016)

    Article  Google Scholar 

  48. W.K. Sung, M. Dalal, F. Ayazi. A mode-matched 0.9 MHz single proof-mass dual-axis gyroscope, in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, (2011), pp. 2821–2824

    Google Scholar 

  49. B.J. Gallacher, J.S. Burdess, A.J. Harris, Principles of a three-axis vibrating gyroscope. IEEE Trans. Aerosp. Electron. Syst. 37(4), 1333–1343 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wen, H. (2019). Introduction. In: Toward Inertial-Navigation-on-Chip. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25470-4_1

Download citation

Publish with us

Policies and ethics