Skip to main content

The Standard Model and the Higgs Boson

  • Chapter
  • First Online:
Physics with Photons Using the ATLAS Run 2 Data

Part of the book series: Springer Theses ((Springer Theses))

  • 222 Accesses

Abstract

In this chapter I introduce the theoretical model and the main experimental results that are the reference framework for the analysis conducted during my three years of doctorate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinberg S (2005) The quantum theory of fields. Vol. 1: foundations. Cambridge University Press, Cambridge

    Google Scholar 

  2. Weinberg S (2013) The quantum theory of fields. Vol. 2: modern applications. Cambridge University Press, Cambridge

    Google Scholar 

  3. Peskin ME, Schroeder DV (1995) An introduction to quantum field theory. Westview Press, Boulder

    Google Scholar 

  4. Mungo D, Carminati L, Turra R, Manzoni S (2018) Measurement of Higgs boson production cross sections in the diphoton decay channel with 80 fb\(^{-1}\) of pp collision data collected by the ATLAS detector. Master’s thesis, Università degli studi di Milano

    Google Scholar 

  5. Noether E (1918) Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918:235–257. http://eudml.org/doc/59024

  6. Particle Data Group Collaboration, Patrignani C et al (2016) Rev Part Phys, Chin Phys C 40(10):100001. https://doi.org/10.1088/1674-1137/40/10/100001

    Article  Google Scholar 

  7. Higgs PW (1964) Broken symmetries, massless particles and gauge fields. Phys Lett 12:132–133. https://doi.org/10.1016/0031-9163(64)91136-9

    Article  ADS  Google Scholar 

  8. Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323. https://doi.org/10.1103/PhysRevLett.13.321

    Article  ADS  MathSciNet  Google Scholar 

  9. Guralnik G, Hagen C, Kibble T (1964) Global conservation laws and massless particles. Phys Rev Lett 13:585–587. https://doi.org/10.1103/PhysRevLett.13.585

    Article  ADS  Google Scholar 

  10. Goldstone J, Salam A, Weinberg S (1962) Broken symmetries. Phys Rev 127:965–970. https://doi.org/10.1103/PhysRev.127.965

    Article  ADS  MathSciNet  Google Scholar 

  11. MuLan Collaboration, Webber DM et al (2011) Measurement of the positive muon lifetime and determination of the Fermi constant to part-per-million precision. Phys Rev Lett 106:041803. https://doi.org/10.1103/PhysRevLett.106.041803, https://doi.org/10.1103/PhysRevLett.106.079901, arXiv:1010.0991 [hep-ex]

  12. ATLAS Collaboration (2012) Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1–29. https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  13. CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30–61. https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  14. Djouadi A (2008) The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model. Phys Rep 457:1–216. https://doi.org/10.1016/j.physrep.2007.10.004, arXiv:hep-ph/0503172 [hep-ph]

    Article  ADS  Google Scholar 

  15. Lee BW, Quigg C, Thacker HB (1977) Weak interactions at very high-energies: the role of the Higgs boson mass. Phys Rev D 16:1519. https://doi.org/10.1103/PhysRevD.16.1519

    Article  ADS  Google Scholar 

  16. Lee BW, Quigg C, Thacker HB (1977) The strength of weak interactions at very high-energies and the Higgs boson mass. Phys Rev Lett 38:883–885. https://doi.org/10.1103/PhysRevLett.38.883

    Article  ADS  Google Scholar 

  17. Hambye T, Riesselmann K (1997) Matching conditions and Higgs mass upper bounds revisited. Phys Rev D 55:7255–7262. https://doi.org/10.1103/PhysRevD.55.7255, arXiv:hep-ph/9610272 [hep-ph]

    Article  ADS  Google Scholar 

  18. LHC Higgs Cross Section Working Group Collaboration, de Florian D et al (2016) Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector. CERN rellow reports: monographs. https://doi.org/10.23731/CYRM-2017-002, http://cds.cern.ch/record/2227475, 869 pp, 295 figures, 248 tables and 1645 citations. Working group web page https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

  19. LHC Higgs Cross Section Working Group Collaboration, Heinemeyer S, Mariotti C, Passarino G, Tanaka R et al (2013) Handbook of LHC Higgs cross sections: 3. Higgs properties: report of the LHC Higgs cross section working group. CERN yellow reports: monographs. https://doi.org/10.5170/CERN-2013-004, https://cds.cern.ch/record/1559921. Comments: 404 pp, 139 figures, to be submitted to CERN report. Working group web page https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

  20. Georgi HM, Glashow SL, Machacek ME, Nanopoulos DV (1978) Higgs bosons from two gluon annihilation in proton proton collisions. Phys Rev Lett 40:692. https://doi.org/10.1103/PhysRevLett.40.692

    Article  ADS  Google Scholar 

  21. Anastasiou C, Duhr C, Dulat F, Furlan E, Gehrmann T, Herzog F, Lazopoulos A, Mistlberger B (2016) High precision determination of the gluon fusion Higgs boson cross-section at the LHC. JHEP 05:058. https://doi.org/10.1007/JHEP05(2016)058, arXiv:1602.00695 [hep-ph]

  22. ATLAS Collaboration (2014) Measurement of the Higgs boson mass from the \(H\rightarrow \gamma \gamma \) and \(H \rightarrow ZZ^{*}\rightarrow 4\ell \) channels with the ATLAS detector using 25 fb\(^{-1}\) of pp collision data. Phys Rev D 90(5):052004. https://doi.org/10.1103/PhysRevD.90.052004, arXiv:1406.3827 [hep-ex]

  23. ATLAS Collaboration (2015) Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector. Phys Rev D 91(1):012006. https://doi.org/10.1103/PhysRevD.91.012006, arXiv:1408.5191 [hep-ex]

  24. CMS Collaboration (2014) Observation of the diphoton decay of the Higgs boson and measurement of its properties. Eur Phys J C 74(10):3076. https://doi.org/10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558 [hep-ex]

  25. CMS Collaboration (2014) Measurement of the properties of a Higgs boson in the four-lepton final state. Phys Rev D 89(9):092007. https://doi.org/10.1103/PhysRevD.89.092007, arXiv:1312.5353 [hep-ex]

  26. CMS Collaboration (2015) Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur Phys J C 75(5):212. https://doi.org/10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662 [hep-ex]

  27. ATLAS, CMS Collaboration (2015) Combined measurement of the Higgs boson mass in pp collisions at \(\sqrt{s}=7\) and 8 TeV with the ATLAS and CMS experiments. Phys Rev Lett 114:191803. https://doi.org/10.1103/PhysRevLett.114.191803, arXiv:1503.07589 [hep-ex]

  28. ATLAS, CMS Collaboration (2016) Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV. JHEP 08:045. https://doi.org/10.1007/JHEP08(2016)045, arXiv:1606.02266 [hep-ex]

  29. ATLAS Collaboration (2014) Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector. Phys Rev D 90(11):112015. https://doi.org/10.1103/PhysRevD.90.112015, arXiv:1408.7084 [hep-ex]

  30. ATLAS Collaboration (2015) Observation and measurement of Higgs boson decays to WW\(^*\) with the ATLAS detector. Phys Rev D 92(1):012006. https://doi.org/10.1103/PhysRevD.92.012006, arXiv:1412.2641 [hep-ex]

  31. ATLAS Collaboration (2015) Study of (W/Z)H production and Higgs boson couplings using \(H \rightarrow WW^{\ast }\) decays with the ATLAS detector. JHEP 08:137. https://doi.org/10.1007/JHEP08(2015)137, arXiv:1506.06641 [hep-ex]

  32. CMS Collaboration (2014) Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. JHEP 01:096. https://doi.org/10.1007/JHEP01(2014)096, arXiv:1312.1129 [hep-ex]

  33. ATLAS Collaboration (2015) Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector. JHEP 04:117. https://doi.org/10.1007/JHEP04(2015)117, arXiv:1501.04943 [hep-ex]

  34. CMS Collaboration (2014) Evidence for the 125 GeV Higgs boson decaying to a pair of \(\tau \) leptons. JHEP 05:104. https://doi.org/10.1007/JHEP05(2014)104, arXiv:1401.5041 [hep-ex]

  35. ATLAS Collaboration (2015) Search for the \(b\bar{b}\) decay of the standard model Higgs boson in associated \((W/Z)H\) production with the ATLAS detector. JHEP 01:069. https://doi.org/10.1007/JHEP01(2015)069, arXiv:1409.6212 [hep-ex]

  36. CMS Collaboration (2014) Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks. Phys Rev D 89(1):012003. https://doi.org/10.1103/PhysRevD.89.012003, arXiv:1310.3687 [hep-ex]

  37. Landau LD (1948) On the angular momentum of a system of two photons. Dokl Akad Nauk Ser Fiz 60(2):207–209. https://doi.org/10.1016/B978-0-08-010586-4.50070-5

  38. Yang C-N (1950) Selection rules for the dematerialization of a particle into two photons. Phys Rev 77:242–245. https://doi.org/10.1103/PhysRev.77.242

    Article  ADS  Google Scholar 

  39. ATLAS Collaboration (2015) Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur Phys J C 75(10):476. https://doi.org/10.1140/epjc/s10052-015-3685-1, https://doi.org/10.1140/epjc/s10052-016-3934-y, arXiv:1506.05669 [hep-ex] (Erratum: Eur Phys J C76(3):152 (2016))

  40. ATLAS Collaboration (2015) Determination of spin and parity of the Higgs boson in the \(WW^*\rightarrow e \nu \mu \nu \) decay channel with the ATLAS detector. Eur Phys J C 75(5):231. https://doi.org/10.1140/epjc/s10052-015-3436-3, arXiv:1503.03643 [hep-ex]

  41. Collins JC, Soper DE (1977) Angular distribution of dileptons in high-energy hadron collisions. Phys Rev D 16:2219. https://doi.org/10.1103/PhysRevD.16.2219

    Article  ADS  Google Scholar 

  42. CMS Collaboration (2015) Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys Rev D 92(1):012004. https://doi.org/10.1103/PhysRevD.92.012004, arXiv:1411.3441 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Manzoni .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manzoni, S. (2019). The Standard Model and the Higgs Boson. In: Physics with Photons Using the ATLAS Run 2 Data. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24370-8_2

Download citation

Publish with us

Policies and ethics