Skip to main content

Search for Supersymmetry in \({\gamma \gamma +E_\text {T}^\text {miss}}\) Final State

  • Chapter
  • First Online:
Physics with Photons Using the ATLAS Run 2 Data

Part of the book series: Springer Theses ((Springer Theses))

  • 195 Accesses

Abstract

This chapter presents a search for signatures of Supersymmetry in events containing two energetic isolated photons and large missing transverse momentum generated in proton-proton collision data at \(\sqrt{s}=13\) TeV recorded with the ATLAS detector [1, 2]. The results are interpreted in the context of the supersymmetric general gauge mediation (GGM) models [3,4,5,6,7,8,9] (see Chap. 3). These results extend those of prior studies with 8 TeV collision data from Run 1 by the ATLAS [10] and CMS [11] experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ATLAS Collaboration (2016) Search for supersymmetry in a final state containing two photons and missing transverse momentum in \(\sqrt{s} = 13~TeV~pp\) collisions at the LHC using the ATLAS detector. Eur Phys J C 76(9):517. https://doi.org/10.1140/epjc/s10052-016-4344-x, arXiv:1606.09150 [hep-ex]

  2. ATLAS Collaboration (2018) Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV \(pp\) collisions with the ATLAS detector. Phys Rev D 97(9):092006. https://doi.org/10.1103/PhysRevD.97.092006, arXiv:1802.03158 [hep-ex]

  3. Alvarez-Gaume L, Claudson M, Wise M (1982) Low-energy supersymmetry. Nucl Phys B 207:96

    Article  ADS  Google Scholar 

  4. Dine M, Fischler W, Srednicki M (1981) Supersymmetric technicolor. Nucl Phys B 189:575. https://doi.org/10.1016/0550-3213(81)90582-4

    Article  ADS  Google Scholar 

  5. Dimopoulos S, Raby S (1981) Supercolor. Nucl Phys B 192:353. https://doi.org/10.1016/0550-3213(81)90430-2

    Article  ADS  Google Scholar 

  6. Nappi CR, Ovrut BA (1982) Supersymmetric extension of the SU(3) \(\times \)SU(2)\(\times \) U(1) Model. Phys Lett B 113:175. https://doi.org/10.1016/0370-2693(82)90418-X

    Article  ADS  Google Scholar 

  7. Dine M, Nelson A (1993) Dynamical supersymmetry breaking at low-energies. Phys Rev D 48:1277. arXiV:hep-ph/9303230

    Article  ADS  Google Scholar 

  8. Dine M, Nelson A, Shirman Y (1995) Low-energy dynamical supersymmetry breaking simplified. Phys Rev D 51:1362. arXiv:hep-ph/9408384

    Article  ADS  Google Scholar 

  9. Dine M, Nelson A, Nir Y, Shirman Y (1996) New tools for low-energy dynamical supersymmetry breaking. Phys Rev D 53:2658. http://arxiv.org/abs/hep-ph/9507378

    Article  ADS  Google Scholar 

  10. ATLAS Collaboration (2015) Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV \(pp\) collisions with the ATLAS detector. Phys Rev D 92:072001. arXiv:1507.05493 [hep-ex]

  11. Collaboration CMS (2015) Search for supersymmetry with photons in pp collisions at \(\sqrt{s}\) = 8 TeV. Phys Rev D 92:072006. arXiv:1507.02898 [hep-ex]

  12. GEANT4 Collaboration, Agostinelli S et al (2003) GEANT4: a simulation toolkit. Nucl Instrum Methods A 506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  13. ATLAS Collaboration (2010) The ATLAS simulation infrastructure. Eur Phys J C 70:823–874. https://doi.org/10.1140/epjc/s10052-010-1429-9, arXiv:1005.4568 [physics.ins-det]

    Article  ADS  Google Scholar 

  14. Gleisberg T, Hoeche S, Krauss F, Schonherr M, Schumann S, Siegert F, Winter J (2009) Event generation with SHERPA 1.1. JHEP 2:7. https://doi.org/10.1088/1126-6708/2009/02/007, arXiv:0811.4622 [hep-ph]

    Article  Google Scholar 

  15. Lai H-L, Guzzi M, Huston J, Li Z, Nadolsky PM, Pumplin J, Yuan CP (2010) New parton distributions for collider physics. Phys Rev D 82:074024. https://doi.org/10.1103/PhysRevD.82.074024, arXiv:1007.2241 [hep-ph]

  16. Schumann S, Krauss F (2008) A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 03:038. https://doi.org/10.1088/1126-6708/2008/03/038, arXiv:0709.1027 [hep-ph]

    Article  Google Scholar 

  17. Hoeche S, Krauss F, Schumann S, Siegert F (2009) QCD matrix elements and truncated showers. JHEP 05:053. https://doi.org/10.1088/1126-6708/2009/05/053, arXiv:0903.1219 [hep-ph]

    Article  Google Scholar 

  18. Frixione S (1998) Isolated photons in perturbative QCD. Phys Lett B 429:369–374. https://doi.org/10.1016/S0370-2693(98)00454-7, arXiv:hep-ph/9801442 [hep-ph]

    Article  ADS  Google Scholar 

  19. Djouadi A, Kneur J-L, Moultaka G (2007) SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput Phys Commun 176:426–455. https://doi.org/10.1016/j.cpc.2006.11.009, arXiv:hep-ph/0211331 [hep-ph]

    Article  ADS  Google Scholar 

  20. Muhlleitner M, Djouadi A, Mambrini Y (2005) SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM. Comput Phys Commun 168:46–70. https://doi.org/10.1016/j.cpc.2005.01.012, arXiv:hep-ph/0311167 [hep-ph]

    Article  ADS  Google Scholar 

  21. Djouadi A, Muhlleitner M, Spira M (2007) Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys Polon B 38:635. arXiv:hep-ph/0609292 [hep-ph]

  22. Bahr M et al (2008) Herwig++ Physics and Manual. Eur Phys J C 58:639–707. https://doi.org/10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883 [hep-ph]

    Article  ADS  Google Scholar 

  23. Pumplin J et al (2002) New generation of parton distributions with uncertainties from global QCD analysis. JHEP 12:0207. https://doi.org/10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195v3

    Article  Google Scholar 

  24. Richter-Was E, Froidevaux D, Poggioli L (1998) ATLFAST 2.0 a fast simulation package for ATLAS. Technical Report ATL-PHYS-98-131, CERN, Geneva. https://cds.cern.ch/record/683751

  25. Beenakker W, Hopker R, Spira M, Zerwas P (1997) Squark and gluino production at hadron colliders. Nucl Phys B 492:51–103. https://doi.org/10.1016/S0550-3213(97)00084-9, arXiv:hep-ph/9610490 [hep-ph]

    Article  ADS  Google Scholar 

  26. Kulesza A, Motyka L (2009) Threshold resummation for squark-antisquark and gluino- pair production at the LHC. Phys Rev Lett 102:111802. https://doi.org/10.1103/PhysRevLett.102.111802, arXiv:0807.2405 [hep-ph]

  27. Kulesza A, Motyka L (2009) Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC. Phys Rev D 80:095004. https://doi.org/10.1103/PhysRevD.80.095004, arXiv:0905.4749 [hep-ph]

  28. Beenakker W et al (2009) Soft-gluon resummation for squark and gluino hadroproduction. JHEP 12:041. https://doi.org/10.1088/1126-6708/2009/12/041, arXiv:0909.4418 [hep-ph]

    Article  Google Scholar 

  29. Beenakker W et al (2011) Squark and gluino hadroproduction. Int J Mod Phys A 26:2637–2664. arXiv:1105.1110

    Article  ADS  Google Scholar 

  30. Botje M et al (2011) The PDF4LHC working group interim recommendations. arXiv:1101.0538 [hep-ph]

  31. Cowan G (2011) Discovery sensitivity for a counting experiment with background uncertainty, London. http://www.pp.rhul.ac.uk/~cowan/stat/medsig/medsigNote.pdf

  32. ATLAS Collaboration (2016) Measurements of \(Z\gamma \) and \(Z\gamma \gamma \) production in \(pp\) collisions at \(\sqrt{s}=\) 8 TeV with the ATLAS detector. Phys Rev D 93(11):112002. https://doi.org/10.1103/PhysRevD.93.112002, arXiv:1604.05232 [hep-ex]

  33. Bozzi G, Campanario F, Rauch M, Zeppenfeld D (2011) \(W\gamma \gamma \) production with leptonic decays at NLO QCD. Phys Rev D 83:114035. https://doi.org/10.1103/PhysRevD.83.114035, arXiv:1103.4613 [hep-ph]

  34. Nadolsky PM et al (2008) Implications of CTEQ global analysis for collider observables. Phys Rev D 78:013004. https://doi.org/10.1103/PhysRevD.78.013004, arXiv:0802.0007 [hep-ph]

  35. Martin A, Stirling W, Thorne R, Watt G (2009) Parton distributions for the LHC0. Eur Phys J C 63:189–285. https://doi.org/10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  36. Cowan G, Cranmer K, Gross E, Vitells O (2011) Asymptotic formulae for likelihood-based tests of new physics. Eur Phys J C 71:1554. arXiv:1007.1727 [physics.data-an]

    Article  Google Scholar 

  37. Cranmer K (2015) Practical statistics for the LHC. 267–308. https://inspirehep.net/record/1356277/files/arXiv:1503.07622.pdf, arXiv:1503.07622 [physics.data-an] [247 (2015)]

  38. Read AL (2002) Presentation of search results: the CL(s) technique. J Phys G 28:2693–2704. https://doi.org/10.1088/0954-3899/28/10/313

    Article  ADS  Google Scholar 

  39. Meade P, Seiberg N, Shih D (2009) General Gauge Mediation. Prog Theor Phys Suppl 177:143–158. https://doi.org/10.1143/PTPS.177.143, arXiv:0801.3278 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Manzoni .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manzoni, S. (2019). Search for Supersymmetry in \({\gamma \gamma +E_\text {T}^\text {miss}}\) Final State. In: Physics with Photons Using the ATLAS Run 2 Data. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24370-8_10

Download citation

Publish with us

Policies and ethics