Skip to main content

How Urban Resilience Can Change Cities: A System Dynamics Model Approach

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

Urban resilience is an emerging approach to planning in cities. In last few decades, this concept has been also used as fundamental principle to set up urban development strategies. Urban resilience is a multi-dimensional and dynamic phenomenon and applied to urban planning it leads to cities being considered as complex socio-economic systems. The reason why few cities take appropriate action to enhance their resilience lies in the difficulty of evaluating this process in terms of time. This paper aims to overcome the difficulties which afflict the concept of urban resilience when involved in urban planning, using a System Dynamics Model (SDM) as an evaluation tool to assess how urban resilience can change cities over time, addressing their complexity. This evaluation model is applied to simulate two different urban scenarios for a real case study in the city of Turin (Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meerow, S., Newell, J.P., Stults, M.: Defining urban resilience: a review. Landsc. Urban Plan. 147, 38–49 (2016). https://doi.org/10.1016/j.landurbplan.2015.11.011

    Article  Google Scholar 

  2. Sharifi, A., Yamagata, Y.: Resilience-oriented urban planning. In: Yamagata, Y., Sharifi, A. (eds.) Resilience-Oriented Urban Planning. LNE, vol. 65, pp. 3–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75798-8_1

    Chapter  Google Scholar 

  3. WEF: The Global Risk Report 2018 13th Edition. http://www3.weforum.org/docs/WEF_GRR18_Report.pdf. Accessed 12 Mar 2019

  4. UNISDR: Hyogo Framework for Action 2005–2015: Building the resilience of nations and communities to disasters (2005). https://www.unisdr.org/2005/wcdr/intergover/official-doc/L-docs/Hyogo-framework-for-action-english.pdf

  5. UNISR: Sendai Framework for Disaster Risk Reduction 2015–2030 (2015). https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf

  6. Folke, C., Carpenter, S.R., Walker, B., Scheffer, M., Chapin, T., Rockström, J.: 
Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15(4) (2010). http://www.ecologyandsociety.org/vol15/iss4/art20/

  7. Desouza, K.C., Flanery, T.H.: Designing, planning, and managing resilient cities: a conceptual framework. Cities 25, 89–99 (2013). https://doi.org/10.1016/j.cities.2013.06.003

    Article  Google Scholar 

  8. Ahern, J.: From fail-safe to safe-to-fail: sustainability and resilience in the new urban world. Landsc. Urban Plan. 100(4), 341–343 (2011). https://doi.org/10.1016/j.landurbplan.2011.02.021

    Article  Google Scholar 

  9. Pluchinotta, I., Pagano, A., Giordano, R., Tsoukiàs, A.: A system dynamics model for supporting decision-makers in irrigation water management. J. Environ. Manag. 222, 815–824 (2018). https://doi.org/10.1016/j.jenvman.2018.06.083

    Article  Google Scholar 

  10. Guan, D., Gao, W., Su, W., Li, H., Hokao, K.: Modeling and dynamic assessment of urban economy-resource-environment system with a coupled system dynamic – geographic information system model. Ecol. Indic. 11, 1333–1344 (2011). https://doi.org/10.1016/j.ecolind.2011.02.007

    Article  Google Scholar 

  11. Park, M., Kim, Y., Lee, H., Han, S., Hwang, S., Choi, M.J.: Modelling the dynamics of urban development projects: focusing on self-sufficient city development. Math. Comput. Model. 57, 2082–2093 (2013). https://doi.org/10.1016/j.mcm.2011.05.058

    Article  MATH  Google Scholar 

  12. Pagano, A., Pluchinotta, I., Giordano, R., Vurro, M.: Drinking water supply in resilient cities: notes from L’aquila earthquake case study. Sustain. Cities Soc. 28, 435–449 (2017). https://doi.org/10.1016/j.scs.2016.09.005

    Article  Google Scholar 

  13. Wu, D., Shuang, N.: Dynamic assessment of urban economy-environment-energy system using system dynamics model: a case study in Bejing. Environ. Res. 164, 70–84 (2018). https://doi.org/10.1016/j.envres.2018.01.029

    Article  Google Scholar 

  14. Tan, Y., Jiao, L., Shuai, C., Shen, L.: A system dynamics model for simulating urban sustainability performance: a China case study. J. Clean. Prod. 199, 1107–1115 (2018). https://doi.org/10.1016/j.jclepro.2018.07.154

    Article  Google Scholar 

  15. Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1–23 (1973). https://doi.org/10.1146/annurev.es.04.110173.000245

    Article  Google Scholar 

  16. Holling, C.S.: Engineering resilience versus ecological resilience. Schulze, P. (ed.) 
Engineering within Ecological Constraints, Washington, DC, USA. The National 
Academies Press (1996)

    Google Scholar 

  17. Sharifi, A., Yamagata, Y.: Principles and criteria for assessing urban energy resilience: a literature review. Renew. Sustain. Energy Rev. 60, 1654–1677 (2016). https://doi.org/10.1016/j.rser.2016.03.028

    Article  Google Scholar 

  18. Sharifi, A.: A critical review of selected tools for assessing community resilience. Ecol. Indic. 69, 629–647 (2016). https://doi.org/10.1016/j.ecolind.2016.05.023

    Article  Google Scholar 

  19. Sharifi, A., Yamagata, Y.: Urban resilience assessment: multiple dimensions, criteria, and indicators. In: Yamagata, Y., Maruyama, H. (eds.) Urban Resilience. ASTSA, pp. 259–276. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39812-9_13

    Chapter  Google Scholar 

  20. Suarez, M., Gomez-Baggethum, E., Benayas, J., Tilbury, D.: Toward an urban resilience index: a case study in 50 Spanish cities. Sustainability 8, 774 (2016). https://doi.org/10.3390/su8080774

    Article  Google Scholar 

  21. Sellberg, M., Wilkinson, M.C., Peterson, G.D.: Resilience assessment: a useful approach to navigate urban sustainability challenges. Ecol. Soc. 20(1), 43 (2015). http://dx.doi.org/10.5751/ES-07258-200143

  22. Cutter, S.L., Ash, K.D., Emrich, C.T.: The geographies of community disasterresilience. Glob. Environ. Chang 29, 65–77 (2014). https://doi.org/10.1016/j.gloenvcha.2014.08.005

    Article  Google Scholar 

  23. Lazaveric, E., Kekivic, Z., Antonic, B.: In search of the principles of resilient urban design: implentability of the principles in the case of the city in Serbia. Energy Build. 158, 1130–1138 (2018). https://doi.org/10.1016/j.enbuild.2017.11.005

    Article  Google Scholar 

  24. Wilkinson, C.: Social-ecological resilience: insights and issues for planning theory. Plan. Theory 11(2), 148–169 (2012). https://doi.org/10.1177/1473095211426274

    Article  Google Scholar 

  25. Figueiredo, L., Honiden, T., Schumann, A.: Indicators for Resilient Cities, OECD Regional Development Working Papers, 2018/02. OECD Publishing, Paris (2018). http://dx.doi.org/10.1787/6f1f6065-en

  26. Yao, H., Shen, L., Tan, Y., Hao, J.: Simulating the impacts of policy scenarios on the sustainability performance of infrastructure projects. Autom. Constr. 20(8), 1060–1069 (2011). https://doi.org/10.1016/j.autcon.2011.04.007

    Article  Google Scholar 

  27. Neuwirth, C., Peck, A., Simonovic, S.P.: Modeling structural change in spatial system dynamics: a Daisyworld example. Environ. Model. Softw. 65, 30–40 (2015). http://dx.doi.org/10.1016/j.envsoft.2014.11.026

    Article  Google Scholar 

  28. Chen, M.C., Ho, T.P., Jan, C.G.: A system dynamics model of sustainable urban development: assessing air purification policies at Taipei City. Asian Pac. Plan. Rev. 4(1), 29–52 (2006)

    Google Scholar 

  29. Zhang, X., Wu, Y., Shen, L., Skitmore, M.: A prototype system dynamic model for assessing the sustainability of construction projects. Int. J. Proj. Manag. 32(1), 66–76 (2014)

    Article  Google Scholar 

  30. Vennix, J.A.M.: Group model-building: tackling messy problems. Syst. Dyn. Rev. 15(4), 379–401 (1996). https://doi.org/10.1016/j.ijproman.2013.01.009

    Article  Google Scholar 

  31. Forrester, J.W.: Industrial Dynamics. The MIT Press, Cambridge (1961)

    Google Scholar 

  32. Forrester, J.W.: Principles of Systems. Productivity, Portland (1968)


    Google Scholar 

  33. Forrester, J.W.: Lessons from system dynamics modelling. Syst. Dyn. Rev. 3(2) (1961)

    Article  Google Scholar 

  34. Thompson, B.P., Bank, L.C.: Use of system dynamics as a decision-making tool in building design and operation. Build. Environ. 45(4), 1006–1015 (2010). https://doi.org/10.1016/j.buildenv.2009.10.008

    Article  Google Scholar 

  35. Bala, B.K., Arshad, F.M., Noh, K.M.: System Dynamics: Modelling and Simulation. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-2045-2

    Book  Google Scholar 

  36. Kunc, M., Mortenson, M.J., Vidgen, R.: A computational literature review of the field of System Dynamics from 1974 to 2017. J. Simul. 12(2), 115–127 (2018). https://doi.org/10.1080/17477778.2018.1468950

    Article  Google Scholar 

  37. Egilmez, G., Tatari, O.: A dynamic modeling approach to highway sustainability: strategies to reduce overall impact. Transp. Res. Pol. Pract. 46(7), 1086–1096 (2012). https://doi.org/10.1016/j.tra.2012.04.011

    Article  Google Scholar 

  38. Shepherd, S.P.: A review of system dynamics models applied in transportation. Transp. B.: Transp. Dyn. 2(2), 83–105 (2014). https://doi.org/10.1080/21680566.2014.916236

    MathSciNet  Google Scholar 

  39. Yu, C.H., Chen, C.H., Lin, C.F., Liaw, S.L.: Development of a system dynamics model for sustainable land use management. J. Chin. Inst. Eng. 26(5), 607–618 (2003). https://doi.org/10.1016/j.habitatint.2008.02.004

    Article  Google Scholar 

  40. Shen, Q., Chen, Q., Tang, B.S., Yeung, S., Hu, Y., Cheung, G.: A system dynamics model for the sustainable land use planning and development. Habitat Int. 33(1), 15–25 (2009). https://doi.org/10.1016/j.habitatint.2008.02.004

    Article  Google Scholar 

  41. Yuan, H., Chini, A.R., Lu, Y., Shen, L.: A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste. Waste Manag 32(3), 521–531 (2012). https://doi.org/10.1016/j.wasman.2011.11.006

    Article  Google Scholar 

  42. Güneralp, B., Seto, K.C.: Environmental impacts of urban growth from an integrated dynamic perspective: a case study of Shenzhen. South China. Global Environ. Change 18(4), 720–735 (2008). https://doi.org/10.1016/j.gloenvcha.2008.07.004

    Article  Google Scholar 

  43. Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World (2000)

    Google Scholar 

  44. Manetsch, T.J., Park, G.L.: Systems analysis and simulation with applications to economic and social systems. Department of Electrical Engineering and System Science, Michigan State University, USA (1982)

    Google Scholar 

  45. Bottero, M.C., Caprioli, C., Berta, M.: Urban problems and patterns of change: the analysis of a downgraded industrial area in Turin. In: Mondini, G., Oppio, A., Stanghellini, S., Bottero, M., Abastante, F. (eds.) Values and Functions for Future Cities. Green Energy and Technology (2019, in press)

    Google Scholar 

  46. Cutter, S.L., Burton, C.G., Emrich, C.T.: Disaster resilience indicators for benchmarking baseline conditions. J. Homel. Secur. Emerg. Manag. 7–14 (2010). https://doi.org/10.2202/1547-7355.1732

  47. Meerow, S., Newell, J.P.: Urban resilience for whom, what, when, where, and why? Urban Geogr. (2016). https://doi.org/10.1080/02723638.2016.1206395

    Article  Google Scholar 

  48. Bottero, M., Datola, G., Monaco, R.: Exploring the resilience of urban systems using fuzzy cognitive maps. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 338–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_24

    Chapter  Google Scholar 

  49. Bottero, M., Datola, G., Monaco, R.: The use of fuzzy cognitive maps for evaluating the reuse project of military barracks in Northern Italy. In: Calabrò, F., Della Spina, L., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 100, pp. 691–699. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92099-3_77

    Chapter  Google Scholar 

  50. Ozemi, U., Ozemi, S.L.: Ecological models based on people knowledge: a multy – step fuzzy cognitive mapping approach. Ecol. Model. 176, 55 (2004). https://doi.org/10.1016/j.ecolmodel.2003.10.027

    Article  Google Scholar 

  51. Batty, M.: Resilient cities, networks, and distruption: editorial. Environ. Plan. B: Urban Anal. City Sci. 40(4), 571–573 (2013). https://doi.org/10.1068/b4004ed

    Article  Google Scholar 

  52. D’Alpaos, C.: Methodological approaches to the valuation of investments in biogas production plants: Incentives vs. market prices in Italy. Valori e Valutazioni 19, 53–64 (2017)

    Google Scholar 

  53. Canesi, R., D’Alpaos, C., Marella, G.: Forced sale values vs. market values in Italy. J. R. Estate Lit. 24(2), 377–401 (2016)

    Google Scholar 

  54. D’Alpaos, C., Bragolusi, P.: Buildings energy retrofit valuation approaches: state of the art and future perspectives. Valori e Valutazioni 20, 79–94 (2018)

    Google Scholar 

  55. Bertolini, M., D’Alpaos, C., Moretto, M.: Do Smart Grids boost investments in domestic PV plants? Evid. Ital. Electr. Mark. Energy 149, 890–902 (2018)

    Google Scholar 

  56. Bottero, M., Mondini, G., Datola, G. Decision-making tools for urban regeneration processes: from stakeholders analysis to stated preference methods. Tema. J. Land Use Mob. Environ. 10(2), 193–212 (2017). http://dx.doi.org/10.6092/1970-9870/5163

  57. Norris, F.H., Stevens, S.P., Pfefferbaum, B., Wyche, K.F., Pfefferbaum, R.L.: Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. Am. J. Commun. Psychol. 41(1–2), 127–150 (2008). https://doi.org/10.1007/s10464-007-9156-6

    Article  Google Scholar 

  58. Peyroux, E.: Discourse of urban resilience and “inclusive development” in the Joannesburg Growth and Development Strategy 2040. Eur. J. Dev. Res. 27(4), 560–573 (2015). https://doi.org/10.1057/ejdr.2015.52

    Article  Google Scholar 

  59. Fastenrath, S., Coenen, L., Davidson, K.: Urban resilience in action: the resilient Melbourne strategy as transformative urban innovation policy? Sustainability 11, 693–703 (2019). https://doi.org/10.3390/su11030693

    Article  Google Scholar 

  60. Brunetta, G., Salizzoni, E., Bottero, M., Monaco, R., Assumma, V.: Measuring Resilience fot territorial enhancement: an experimentation in Trentino. Journal Valori e Valutazioni 20, 69–78 (2018)

    Google Scholar 

  61. Becchio, C., Bottero, M.C., Corgnati, S.P., Dell’Anna, F.: Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin. Land Use Policy 78, 803–817 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

Part of the work illustrated in the present paper has been developed in the research project titled VALIUM (Valuation for Integrated Urban Management) that has been supported from the Department of Regional and Urban Studies and Planning - DIST of the Politecnico di Torino (I call 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Datola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datola, G., Bottero, M., De Angelis, E. (2019). How Urban Resilience Can Change Cities: A System Dynamics Model Approach. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11622. Springer, Cham. https://doi.org/10.1007/978-3-030-24305-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24305-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24304-3

  • Online ISBN: 978-3-030-24305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics