We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Lorentz Invariance Violation: Limits from the Crab Pulsar | SpringerLink
Skip to main content

Lorentz Invariance Violation: Limits from the Crab Pulsar

  • Chapter
  • First Online:
Revealing the Most Energetic Light from Pulsars and Their Nebulae

Part of the book series: Springer Theses ((Springer Theses))

  • 275 Accesses

Abstract

The observation of pulsed photons up to \(\sim \)1 TeV provides a unique set of data to investigate fundamental physics. An application for which well timed emission at the highest energies is greatly valuable is testing for Lorentz invariance.

Einstein has put an end to this isolation; it is now well established that gravitation affects not only matter, but also light.

Prof. H. A. Lorentz, 1920

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://dan.iel.fm/emcee/current, last accessed 03/02/2018.

  2. 2.

    Following Eq. 6.3 this means a worsening of 25 and 13% for the linear and quadratic limit, respectively.

References

  1. Mattingly D (2005) Modern tests of Lorentz invariance. Living Rev Relativ 8(1):5. https://doi.org/10.12942/lrr-2005-5

  2. Ahnen ML et al (2017b) Constraining Lorentz invariance violation using the crab pulsar emission observed up to TeV energies by MAGIC. Astrophys J Suppl Ser 232(1):9. https://doi.org/10.3847/1538-4365/aa8404

    Article  ADS  Google Scholar 

  3. Garay LJ (1995) Quantum gravity and minimum length. Int J Mod Phys A 10(02):145–165. https://doi.org/10.1142/S0217751X95000085

    Article  ADS  Google Scholar 

  4. Plato ADK et al (2016) Gravitational effects in quantum mechanics. Contemp Phys 57(4):477–495. https://doi.org/10.1080/00107514.2016.1153290

    Article  ADS  Google Scholar 

  5. Colladay D, Kostelecký VA (1998) Lorentz-violating extension of the standard model. Phys Rev D 58(11):116002. https://doi.org/10.1103/PhysRevD.58.116002

    Article  ADS  Google Scholar 

  6. Amelino-Camelia G et al (1998) Tests of quantum gravity from observations of gamma-ray bursts. Nature 393(6687):763–765. https://doi.org/10.1038/31647

    Article  ADS  Google Scholar 

  7. Abramowski A et al (2011) Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155–304 flare data taken on MJD 53944. Astropart Phys 34(9):738–747. https://doi.org/10.1016/j.astropartphys.2011.01.007

    Article  ADS  Google Scholar 

  8. Albert J et al (2008a) Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope. Phys Lett B 668(4):253–257. https://doi.org/10.1016/j.physletb.2008.08.053

    Article  ADS  Google Scholar 

  9. Vasileiou V et al (2013) Constraints on Lorentz invariance violation from fermi -large area telescope observations of gamma-ray bursts. Phys Rev D 87(12):122001. https://doi.org/10.1103/PhysRevD.87.122001

    Article  ADS  Google Scholar 

  10. Mazin D et al (2013) Potential of EBL and cosmology studies with the Cherenkov telescope array. Astropart Phys 43:241–251. https://doi.org/10.1016/j.astropartphys.2012.09.002

    Article  ADS  Google Scholar 

  11. Martínez M, Errando M (2009) A new approach to study energy-dependent arrival delays on photons from astrophysical sources. Astropart Phys 31(3):226–232. https://doi.org/10.1016/j.astropartphys.2009.01.005

    Article  ADS  Google Scholar 

  12. Otte AN (2011) Prospects of performing Lorentz invariance tests with VHE emission from pulsars. In: 32nd international cosmic ray conference. Beijing, China. https://doi.org/10.7529/ICRC2011/V07/1302

  13. Kaaret P (1999) Pulsar radiation and quantum gravity. Astron Astrophys 345:32–34

    ADS  Google Scholar 

  14. Thompson DJ (2008) Gamma ray astrophysics: the EGRET results. Rep Prog Phys 71(11):116901. https://doi.org/10.1088/0034-4885/71/11/116901

    Article  ADS  Google Scholar 

  15. Kislat F, Krawczynski H (2017) Planck-scale constraints on anisotropic Lorentz and CPT invariance violations from optical polarization measurements. Phys Rev D 95(8):083013. https://doi.org/10.1103/PhysRevD.95.083013

    Article  ADS  Google Scholar 

  16. Trimble V (1973) The distance to the crab nebula and NP 0532. Publ Astron Soc Pac 85(October):579. https://doi.org/10.1086/129507

    Article  ADS  Google Scholar 

  17. Kaplan DL et al (2008) A precise proper motion for the crab pulsar, and the difficulty of testing spin-kick alignment for young neutron stars. Astrophys J 677(2):1201–1215. https://doi.org/10.1086/529026

    Article  ADS  Google Scholar 

  18. Aliu E et al (2011) Detection of pulsed gamma rays above 100 GeV from the crab pulsar. Science 334(6052):69–72. https://doi.org/10.1126/science.1208192

    Article  ADS  Google Scholar 

  19. Aleksić J et al (2012b) Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes. Astron Astrophys 540:A69. https://doi.org/10.1051/0004-6361/201118166

    Article  Google Scholar 

  20. MacKay DJ (2005) Information theory, inference, and learning algorithms. J Am Stat Assoc 100(472):1461–1462. https://doi.org/10.1198/jasa.2005.s54

    Article  Google Scholar 

  21. Aleksić J et al (2014a) Detection of bridge emission above 50 GeV from the crab pulsar with the MAGIC telescopes. Astron Astrophys 565:L12. https://doi.org/10.1051/0004-6361/201423664

    Article  ADS  Google Scholar 

  22. Foreman-Mackey D et al (2013) emcee : the MCMC Hammer. Publ Astron Soc Pac 125(925):306–312. https://doi.org/10.1086/670067

    Article  ADS  Google Scholar 

  23. Foreman-Mackey D (2016) corner.py: Scatterplot matrices in Python. J Open Sour Softw 1(2). https://doi.org/10.21105/joss.00024

    Article  ADS  Google Scholar 

  24. Andrae R et al (2010) Dos and don’ts of reduced chi-squared. ArXiv, ID 1012:3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Carreto Fidalgo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carreto Fidalgo, D. (2019). Lorentz Invariance Violation: Limits from the Crab Pulsar. In: Revealing the Most Energetic Light from Pulsars and Their Nebulae. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24194-0_6

Download citation

Publish with us

Policies and ethics