Skip to main content

Some Higher Degree Fields

  • Chapter
  • First Online:
Diophantine Equations and Power Integral Bases
  • 454 Accesses

Abstract

In this chapter we give applications of former results to some types of higher degree fields. Some of these applications concern infinite parametric families of fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bérczes, J.H. Evertse, K. Győry, Multiply monogenic orders. Ann. Sc. Norm. Super. Pisa Cl. Sci. 12(2), 467–497 (2013)

    Google Scholar 

  2. A. Bremner, On power bases in cyclotomic fields. J. Number Theory 28, 288–298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.E. Charkani, A. Deajim, Generating a power basis over a Dedekind ring. J. Number Theory, 132, 2267–2276 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.H. Evertse, A survey on monogenic orders. Publ. Math. 79(3–4), 411–422 (2011)

    MathSciNet  MATH  Google Scholar 

  5. J.H. Evertse, K. Győry, Effective results for discriminant equations over finitely generated integral domains, in Number Theory – Diophantine Problems, Uniform Distribution And Applications, ed. by C. Elsholtz, et al. (Springer, Berlin, 2017), pp. 237–256

    Chapter  Google Scholar 

  6. Z. Franus̆ić, B. Jadrijević, Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields. Publ. Math. 92, 293–315 (2018)

    Google Scholar 

  7. I. Gaál, Power integral bases in composites of number fields. Can. Math. Bull. 41, 158–165 (1998)

    Article  MATH  Google Scholar 

  8. I. Gaál, L. Remete, Integral bases and monogenity of composite fields. Exp. Math. 28(2), 209–222 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Gaál, L. Robertson, Power integral bases in prime-power cyclotomic fields. J. Number Theory 120(2), 372–384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. M.N. Gras, Non monogènéité de l’anneau des entiers de certaines extensions abèliennes de \({\mathbb Q}\). Publ. Math. Fac. Sci. Besançon, Théor. Nombres 1983–1984, 25 pp.

    Google Scholar 

  11. M.N. Gras, Non monogènéité de l’anneau des entiers des extensions cycliques de \({\mathbb Q}\) de degré premier l ≥ 5. J. Number Theory 23, 347–353 (1986)

    Google Scholar 

  12. N. Khan, S. Katayama, T. Nakahara, T. Uehara, Monogenity of totally real algebraic extension fields over a cyclotomic field. J. Number Theory 158, 348–355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. H.H. Kim, Z. Wolske, Number fields with large minimal index containing quadratic subfields. Int. J. Number Theory 14(9), 2333–2342 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. M.J. Lavallee, B.K. Spearman, Q. Yang, PSL(2,7) septimic fields with a power basis. J. Théor. Nombres Bordeaux. 24(2), 369–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Motoda, T. Nakahara, Power integral bases in algebraic number fields whose Galois groups are 2-elementary abelian. Arch. Math. 83, 309–316 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Motoda, T. Nakahara, S.I.A. Shah, On a problem of Hasse for certain imaginary Abelian fields. J. Number Theory 96(2), 326–334 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Motoda, T. Nakahara, K.H. Park, On power integral bases of the 2-elementary abelian extension fields. Trends Math. 9, 55–63 (2006)

    Google Scholar 

  18. T. Nakahara, A simple proof for non–monogenesis of the rings of integers in some cyclic fields, in Advances in Number Theory, ed. by F.Q.Gouvéa, N. Yui (Clarendon Press, Oxford, 1993), pp. 167–173

    MATH  Google Scholar 

  19. G. Nyul, Non-monogenity of multiquadratic number fields. Acta Math. Inform. Univ. Ostraviensis 10, 85–93 (2002)

    MathSciNet  MATH  Google Scholar 

  20. A. Pethő, M. Pohst, On the indices of multiquadratic number fields. Acta Arith. 153(4), 393–414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Robertson, Power bases for cyclotomic integer rings. J. Number Theory 69, 98–118 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Robertson, Power bases for 2-power cyclotomic fields. J. Number Theory 88, 196–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Robertson, Monogeneity in cyclotomic fields. Int. J. Number Theory 6(7), 1589–1607 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Robertson, R. Russell, A hybrid Gröbner bases approach to computing power integral bases. Acta Math. Hung. 147(2), 427–437 (2015)

    Article  MATH  Google Scholar 

  25. B.K. Spearman, K.S. Williams, The simplest D 4 octics. Int. J. Algebra 2, 79–89 (2008)

    MathSciNet  MATH  Google Scholar 

  26. S.I.A. Shah, T. Nakahara, Non-monogenetic aspect of the ring of integers in certain Abelian fields, in Proceedings of the Jangjeon Mathematical Society, ed. by T. Kim, et al. (Jangjeon Mathematical Society, Korea, 2000) (ISBN89-87809-15-3). Proc. Jangjeon Math. Soc. 1(2000), 75–79

    Google Scholar 

  27. S.I.A. Shah, T. Nakahara, A prototype of certain abelian fields whose rings of integers have a power basis. Rep. Fac. Sci. Eng. Saga Univ. Math. 31(1), 7–19 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaál, I. (2019). Some Higher Degree Fields. In: Diophantine Equations and Power Integral Bases. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23865-0_15

Download citation

Publish with us

Policies and ethics