Skip to main content

Effects of Leading-Edge Tubercles on Dynamically Pitching Airfoils

  • Chapter
  • First Online:
Flow Control Through Bio-inspired Leading-Edge Tubercles

Abstract

The hydrodynamic effects of leading-edge (LE) tubercles, inspired by the flipper of humpback whales, has become a subject of interest for the control of flow over lifting surfaces. The primary focus of these efforts has centered on static cases where the angle-of-attack (AoA) of the flow is held constant. However, given the dynamic nature of the use of these flippers by humpback whales, there may also be benefit in dynamic scenarios as well. The investigation of flow control of dynamically actuated airfoils with LE tubercles is much more limited compared with the static studies. The results to date show that these bio-inspired airfoils expand the operating envelope for dynamic stall by enhancing lift and delaying stall to higher angles. These results indicate that applications such as on helicopter rotors and wind turbines may be able to avoid the detrimental effects of dynamic stall leading to more efficient devices, or to even better utilize its effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72

    Article  ADS  MathSciNet  Google Scholar 

  • Bai CJ, Lin YY, Lin SY, Wang WC (2005) Computational fluid dynamics analysis of the vertical axis wind turbine blade with tubercle leading edge. J Renew Sustain Ener 7(3):033124

    Article  Google Scholar 

  • Barwey D, Gaonkar GH (1994) Dynamic-stall and structural-modeling effects on helicopter blade stability with experimental correlation. AIAA J 32(4):811–819

    Article  ADS  Google Scholar 

  • Biava M, Khier W, Vigevano L (2012) CFD prediction of air flow past a full helicopter configuration. Aerosp Sci Technol 19:3–18

    Article  Google Scholar 

  • Bohl DG, Foss JF (1999) Near exit plane effects caused by primary-plus-secondary tabs. AIAA J 37(2):192–201

    Article  ADS  Google Scholar 

  • Bohl DG, Koochesfahani MM (2009) MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. J Fluid Mech 620:63–88

    Article  ADS  Google Scholar 

  • Borg J (2012) The effect of leading edge serrations on dynamic stall. PhD Thesis University of Southampton

    Google Scholar 

  • Cai C, Zuo Z, Morimoto M, Maeda T, Kamada Y, Liu S (2018) Two-step stall characteristic of an airfoil with a single leading-edge protuberance. AIAA J 56(1):64–77

    Article  ADS  Google Scholar 

  • Carr LW, McAlister KW, McCroskey WJ (1977) Analysis of the development of dynamic stall based on oscillating airfoil experiments. NASA Technical Note D-8382

    Google Scholar 

  • Conlisk AT (2001) Modern helicopter rotor aerodynamics. Prog Aero Sp Sci 37:419–476

    Article  Google Scholar 

  • Custodio D (2007) The effect of humpback whale-like leading edge protuberances on hydrofoil performance. Masters Thesis Worcester Polytechnic Institute

    Google Scholar 

  • Dabiri JO (2005) On the estimation of swimming and flying forces from wake measurements. J Exp Biol 208(18):3519–3532

    Article  Google Scholar 

  • De Gregorio F (2012) Flow field characterization and interactional aerodynamics analysis of a complete helicopter. Aero Sp Sci Tech 19:19–36

    Article  Google Scholar 

  • Ekaterinaris JA, Platzer MF (1997) Computational prediction of airfoil dynamic stall. Prog Aerosp Sci 33:759–846

    Article  Google Scholar 

  • Fish FE (1999) Performance constraints on the maneuverability of flexible and rigid biological systems. In: Proceedings of the eleventh international symposium of unmanned untethered submersible technology, pp 394–406

    Google Scholar 

  • Fish FE, Battle JM (1995) Hydrodynamic design of the Humpback Whale flipper. J Morphol 225:51–60

    Article  Google Scholar 

  • Freymuth P (1988) Propulsive vortical signature of plunging and pitching airfoils. AIAA J 26:881–883

    Article  ADS  Google Scholar 

  • Fujisawa N, Shibuya S (2001) Observations of dynamic stall on Darrieus wind turbine blades. J Wind Eng Ind Aerod 89:201–214

    Article  Google Scholar 

  • Gardner AD, Richter K, Mai H, Altmikus ARM, Klein A, Rohardt CH (2013) Experimental investigation of dynamic stall performance for the EDI-M109 airfoils. J Am Helicopter Soc 58(1):1–13

    Article  Google Scholar 

  • Geissler W, Dietz G, Mai H, Junker M (2004) Dynamic stall control investigations on a full size chord blade section. 29th European Rotorcraft Forum, Friedrichshafen Germany

    Google Scholar 

  • Geissler W, Dietz G, Mai H (2005) Dynamic stall on a supercritical airfoil. Aerosp Sci Technol 9:390–399

    Article  Google Scholar 

  • Gendrich CP (1999) Dynamic stall of rapidly pitching airfoils: MTV experiments and Navier-Stokes simulations. PhD Dissertation Michigan State University

    Google Scholar 

  • Heine B, Mulleners K, Joubert G, Raffel M (2011) Dynamic stall control by passive disturbance generators. AIAA J 51(9):2086–2097

    Article  ADS  Google Scholar 

  • Holierhoek JG, De Vaal JB, Van Zuijlen AH, Bijl H (2013) Comparing different dynamic stall models. Wind Energy 16:139–158

    Article  ADS  Google Scholar 

  • Howle LE (2009) Report on the efficiency of a Whalepower Corp. 5 meter prototype wind turbine blade, Bellequant LLC, Durham NC

    Google Scholar 

  • Hrynuk JT (2015) The effect of leading edge tubercles on dynamic stall. Ph.D. Dissertation Clarkson University

    Google Scholar 

  • Johari H, Henoch C, Custodio D, Levshin A (2007) Effects of leading-edge protuberances on airfoil performance. AIAA J 45(11):2634–2642

    Article  ADS  Google Scholar 

  • King JT, Kumar R, Green MA (2018) Experimental observations of the three-dimensional wake structures and dynamics generated by a rigid, bioinspired panel. Phys Rev Fluids 3:034701

    Article  ADS  Google Scholar 

  • Larsen JW, Nielsen SRK, Krenk S (2007) Dynamic stall model for wind turbine airfoils. J Fluids Struct 23:959–982

    Article  Google Scholar 

  • Leishman JG (2002) Challenges in modeling the unsteady aerodynamics of wind turbines. In: 21st ASME wind energy symposium and the 40th AIAA Aerospace Sciences meeting, Reno NV

    Google Scholar 

  • Lighthill MJ (1963) Introduction to boundary layer theory. In: Rosenhead L (ed) Laminar boundary layers. Clarendon, Oxford

    Google Scholar 

  • Mai H, Dietz G, Geissler W, Kichter K, Bosbach J, Richard H, de Groot K (2008) Dynamic stall control by leading edge vortex generators. J Am Helicopter Soc 53(1):26–36

    Article  Google Scholar 

  • McCroskey WJ (1981) The phenomenon of dynamic stall. NASA Technical Memorandum 81264

    Google Scholar 

  • Miklosovic DS, Murray MM, Howle LE, Fish FE (2004) Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys Fluids 16(5):39–42

    Article  ADS  Google Scholar 

  • Ozen A, Rockewell D (2010) Control of voritcal structures on a flapping wing via a sinusoidal leading-edge. Phys Fluids 22:021701

    Article  ADS  Google Scholar 

  • Pierce K, Hansen AC (1995) Prediction of wind turbine rotor loads using the Beddoes-Leishman model for dynamic stall. J Sol Energy Eng 117:200–204

    Article  Google Scholar 

  • Schouveiler L, Hover FS, Triantafyllou MS (2005) Performance of flapping foil propulsion. J Fluid Struct 20:949–959

    Article  Google Scholar 

  • Schreck SJ, Robinson MC (2007) Horizontal axis wind turbine blade aerodynamics in experiments and modeling. IEEE T Energy Conver 22(1):61–70

    Article  ADS  Google Scholar 

  • Segre PS, Mdudzi S, Meyer MA, Findlay KP, Goldbogen JA (2017) A hydrodynamically active flipper-stroke in humpback whales. Curr Biol 27:R623–R641

    Article  Google Scholar 

  • Stanway MJ (2008) Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. Masters Thesis MIT

    Google Scholar 

  • Tabib M, Rasheed A, Siddiqui MS, Kvamsdal T (2017) A full-scale 3D Vs 2.5D Vs 2D analysis of flow pattern and forces for an industrial-scale 5 MW NREL reference wind-turbine. Energy Procedia 137:477–486

    Article  Google Scholar 

  • Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluid Struct 7:205

    Article  Google Scholar 

  • Van Nierop EA (2009) Flows in films and over flippers. Ph.D. thesis Harvard University

    Google Scholar 

  • Van Nierop EA, Alben S, Brenner MP (2008) How bumps on whale flippers delay stall: an aerodynamic model. Phys Rev Lett 100(5):054502

    Article  ADS  Google Scholar 

  • Wang Y, Hu W, Zhang S (2014) Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing. J Hydrodyn 26(6):912–920

    Google Scholar 

  • Wang Z, Zhuang M (2017) Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Appl Energy 208:1184–1197

    Article  Google Scholar 

  • Watts P, Fish FE (2001) The influences of passive leading edge tubercles on wing performance. In: 12th International Symposium on Unmanned Untethered Submersible Technology, Durham NH

    Google Scholar 

  • Yen J, Ahmed NA (2013) Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J Wind Eng Ind Aerod 114:12–17

    Article  Google Scholar 

  • Yu YH, Lee S, McAlister W, Tung C, Wang CM (1995) Dynamic stall control for advanced rotorcraft application. AIAA J 33(2):289–295

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Bohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hrynuk, J., Bohl, D. (2020). Effects of Leading-Edge Tubercles on Dynamically Pitching Airfoils. In: New, D., Ng, B. (eds) Flow Control Through Bio-inspired Leading-Edge Tubercles. Springer, Cham. https://doi.org/10.1007/978-3-030-23792-9_6

Download citation

Publish with us

Policies and ethics