Skip to main content

Tubercled Wing Flow Physics and Performance

  • Chapter
  • First Online:
Flow Control Through Bio-inspired Leading-Edge Tubercles

Abstract

This chapter provides a review of the current understanding of both the potential performance effects conferred by the application of tubercles as well as our understanding of the mechanisms by which these effects are produced. While it is clear that tubercles can both beneficially and detrimentally affect performance, depending on the flow conditions, the mechanism by which this occurs and the influence of Reynolds number remain active topics of debate. The following discussion describes nine different flow mechanisms that have been proposed to explain the observed performance effects, as well as our state of knowledge of Reynolds number effects. The influence of tubercle geometric parameters such as the amplitude-to-wavelength ratio (A/λ) and amplitude-to-chord ratio (A/c) are shown to be important. Finally, the effects of tubercles on wings of finite aspect ratio (AR) and sweep, both of which influence the large-scale three-dimensionality of the flow, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arai H, Doi Y, Nakashima T, Mutsuda H (2010) A study on stall delay by various wavy LEs. J Aero Aqua Bio-mech 1(1):18–23

    Google Scholar 

  • Bachmann T, Klän S, Baumgartner W, Klaas M, Schröder W, Wagner H (2007) Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia. Front Zool 4(1):23

    Article  Google Scholar 

  • Biedermann TM, Chong TP, Kameier F, Paschereit CO (2017) Statistical–empirical modeling of airfoil noise subjected to LE serrations. AIAA J 55(9):3128–3142

    Article  ADS  Google Scholar 

  • Bolzon MD (2017) The effects of tubercles on swept wing performance at pre-stall angles of attack. Ph.D., The University of Adelaide

    Google Scholar 

  • Bolzon MD, Kelso RM, Arjomandi M (2015) Tubercles and their applications. J Aerosp Eng 29(1):04015013

    Article  Google Scholar 

  • Bolzon MD, Kelso RM, Arjomandi M (2016) Formation of vortices on a tubercled wing, and their effects on drag. Aerosp Sci Technol 56:46–55

    Article  Google Scholar 

  • Bolzon MD, Kelso RM, Arjomandi M (2017) Force measurements and wake surveys of a swept tubercled wing. J Aerosp Eng 30(3):04016085

    Article  Google Scholar 

  • Cai C, Zuo Z, Liu S, Wu Y (2015) Numerical investigations of hydrodynamic performance of hydrofoils with LE protuberances. Adv Mech Eng 7(7):1687814015592088

    Article  Google Scholar 

  • Cai C, Zuo Z, Maeda T, Kamada Y, Li Q, Shimamoto K, Liu S (2017) Periodic and aperiodic flow patterns around an airfoil with LE protuberances. Phys Fluids 29(11):115110

    Article  ADS  Google Scholar 

  • Camara JFD, Sousa JMM (2013) Numerical study on the use of a sinusoidal LE for passive stall control at low Reynolds number. In: Proceedings of 51st AIAA Aerospace Sciences Meeting, Grapevine, Texas, AIAA-2013-0062

    Google Scholar 

  • Chaitanya P, Narayanan S, Joseph P, Vanderwel C, Kim JW, Ganapathisubramani B (2015) Broadband noise reduction through LE serrations on realistic aerofoils. In: Proceedings of 21st AIAA/CEAS aeroacoustics conference, vol 2202

    Google Scholar 

  • Chaitanya P, Joseph P, Narayanan S, Vanderwel C, Turner J, Kim JW, Ganapathisubramani B (2017) Performance and mechanism of sinusoidal LE serrations for the reduction of turbulence–aerofoil interaction noise. J Fluid Mech 818:435–464

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chen J, Li S, Nguyen V (2012) The effect of LE protuberances on the performance of small aspect ratio foils. In: Proceedings of 15th international symposium on flow visualization, pp 25–28

    Google Scholar 

  • Chong TP, Vathylakis A, McEwen A, Kemsley F, Muhammad C, Siddiqi S (2015) Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal LEs. In: Proceedings of 21st AIAA/CEAS aeroacoustics conference, AIAA 2015-2200

    Google Scholar 

  • Custodio D (2007) The effect of humpback whale-like LE protuberances on hydrofoil performance. Master of Science Thesis, Worcester Polytechnic Institute

    Google Scholar 

  • Custodio D, Henoch CW, Johari H (2015) Aerodynamic characteristics of finite span wings with LE protuberances. AIAA J 53(7):1878–1893

    Article  ADS  Google Scholar 

  • de Paula AA (2016) The airfoil thickness effects on wavy LE phenomena at low Reynolds number regime. Ph.D., University of Sao Paulo

    Google Scholar 

  • de Paula AA, Meneghini JK, Kleine VG, Girard RM (2017) The wavy LE performance for a very thick airfoil. In: Proceedings of 55th AIAA Aerospace Sciences Meeting, Texas, USA, AIAA2017-0492

    Google Scholar 

  • Dropkin A, Custodio D, Henoch CW, Johari H (2012) Computation of flow field around an airfoil with LE protuberances. J Aircraft 49(5):1345–1355

    Article  Google Scholar 

  • Favier J, Pinelli A, Piomelli U (2011) Control of the separated flow around an airfoil using a wavy LE inspired by humpback whale flippers. CR Mec 3401(1):107–114

    Google Scholar 

  • Fish FE, Battle JM (1995) Hydrodynamic design of the humpback whale flipper. J Morphol 225(1):51–60

    Article  Google Scholar 

  • Graham R (1934) The silent flight of owls. Aeronaut J 38(286):837–843

    Article  Google Scholar 

  • Guerreiro JE, Sousa JM (2012) Low-Reynolds-number effects in passive stall control using sinusoidal LEs. AIAA J 50(2):461–469

    Article  ADS  Google Scholar 

  • Hansen KL, Kelso RM, Dally BB (2010) An investigation of three dimensional effects on the performance of tubercles at low Reynolds numbers. In: Proceedings of 17th Australian fluid mechanics conference, Auckland, New Zealand

    Google Scholar 

  • Hansen KL, Kelso RM, Dally BB (2011) Performance variations of LE tubercles for distinct airfoil profiles. AIAA J 49(1):185–194

    Article  ADS  Google Scholar 

  • Hansen KL, Kelso RM, Doolan C (2012) Reduction of flow induced tonal noise using LE sinusoidal modifications. Acoust. Aust. 40(3)

    Google Scholar 

  • Hansen K, Kelso R, Choudhry A, Arjomandi M (2014) Laminar separation bubble effect on the lift curve slope of an airfoil. In: Proceedings of 19th Australasian fluid mechanics conference. Melbourne, Australia

    Google Scholar 

  • Hansen KL, Rostamzadeh N, Kelso RM, Dally BB (2016) Evolution of the streamwise vortices generated between LE tubercles. J Fluid Mech 788:730–766

    Article  ADS  Google Scholar 

  • Hersh AS, Sodermant PT, Hayden RE (1974) Investigation of acoustic effects of LE serrations on airfoils. J Aircraft 11(4):197–202

    Article  Google Scholar 

  • Johari H, Henoch C, Custodio D, Levshin A (2007) Effects of LE protuberances on airfoil performance. AIAA J 45(11):2634–2642

    Article  ADS  Google Scholar 

  • Kim JW, Haeri S, Joseph PF (2016) On the reduction of aerofoil–turbulence interaction noise associated with wavy LEs. J Fluid Mech 792:526–552

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kim H, Kim J, Choi H (2018) Flow structure modifications by LE tubercles on a 3D wing. Bioinspir Biomim 13(6):066011

    Article  ADS  Google Scholar 

  • Kingan MJ, Pearse JR (2009) Laminar boundary layer instability noise produced by an aerofoil. J Sound Vib 322(4–5):808–828

    Article  ADS  Google Scholar 

  • Lau ASH, Haeri S, Kim JW (2013) The effect of wavy LEs on aerofoil–gust interaction noise. J Sound Vib 332:6234–6253

    Article  ADS  Google Scholar 

  • Lin JC (2002) Review of research on low-profile vortex generators to control boundary layer separation. Prog Aerosp Sci 38(4–5):389–420

    Article  Google Scholar 

  • Malipeddi AK, Mahmoudnejad N, Huffmann KA (2012) Numerical analysis of effects of LE protuberances on aircraft wing performance. J Aircraft 49(5):1336–1344

    Article  Google Scholar 

  • Marchaj CA (1979) Aero-hydrodynamics of sailing. Adlard Coles Ltd/Granada

    Google Scholar 

  • McAlpine A, Nash E, Lowson M (1999) On the generation of discrete frequency tones by the flow around an aerofoil. J Sound Vib 222(5):753–779

    Article  ADS  Google Scholar 

  • Miklosovic DS, Murray MM, Howle LE, Fish FE (2004) LE tubercles delay stall on humpback whale flippers. Phys Fluids 16(5):L39–L42

    Article  ADS  MATH  Google Scholar 

  • Miklosovic DS, Murray MM, Howle L (2007) Experimental evaluation of sinusoidal LEs. J Aircraft 44(4):1404–1408

    Article  Google Scholar 

  • Murray MM, Miklosovic DS, Fish FE, Howle LE (2005) Effects of LE tubercles on a representative whale flipper model at various sweep angles. In: Proceedings of 14th unmanned untethered submersible technology (UUST), Durham, New Hampshire, Aug 2005

    Google Scholar 

  • Narayanan S, Chaitanya P, Haeri S, Joseph P, Kim J, Polacsek C (2015) Airfoil noise reductions through LE serrations. Phys Fluids 27(2):025109

    Article  ADS  Google Scholar 

  • Pedro HTC, Kobayashi MH (2008) Numerical study of stall delay on humpback whale flippers. In: Proceedings of 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA2008-0584

    Google Scholar 

  • Perez-Torro R, Kim JW (2017) A large-eddy simulation on a deep-stalled aerofoil with a wavy LE. J Fluid Mech 813:23–52

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Roger M (2016) Airfoil turbulence-impingement noise reduction by porosity or wavy LE cut: experimental investigations. In: Proceedings of INTER-NOISE and NOISE-CON Congress and conference, vol 253, No. 2, pp 6366–6375. Institute of Noise Control Engineering

    Google Scholar 

  • Rostamzadeh N, Kelso RM, Dally BB, Hansen KL (2013) The effect of undulating LE modifications on NACA 0021 airfoil characteristics. Phys Fluids 25(11):117101

    Article  ADS  Google Scholar 

  • Rostamzadeh N, Hansen KL, Kelso RM, Dally BB (2014) The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating LE modification. Phys Fluids 26(10):107101

    Article  ADS  Google Scholar 

  • Rostamzadeh N, Kelso RM, Dally BB (2017) A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled LE. Theoret Comput Fluid Dyn 31(1):1–32

    Article  ADS  Google Scholar 

  • Sarradj E, Fritzschey C, Geyery T (2010) Silent owl flight: bird flyover noise measurements. In: Proceedings of 16th AIAA CEAS aeroacoustics conference

    Google Scholar 

  • Serson D, Meneghini JR (2015) Numerical study of wings with wavy leading and TEs. Procedia IUTAM 14:563–569

    Article  Google Scholar 

  • Serson D, Meneghini JR, Sherwin JS (2017) Direct numerical simulations of the flow around wings with spanwise waviness. J Fluid Mech 826:714–731

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Skillen A, Revell A, Pinelli A, Piomelli U, Favier J (2014) Flow over a wing with LE undulations. AIAA J 53(2):464–472

    Article  ADS  Google Scholar 

  • Soderman PT (1973) LE serrations which reduce the noise of low-speed rotors. NASA Technical Note, NASA TN D-7371

    Google Scholar 

  • Stanway MJ (2008) Hydrodynamic effects of LE tubercles on control surfaces and in flapping foil propulsion. Master of Science in Ocean Engineering Mechanical Engineering, Massachusetts Institute of Technology, Feb 2008

    Google Scholar 

  • Stein B, Murray MM (2005) Stall mechanism analysis of humpback whale flipper models. In: Proceedings of unmanned untethered submersible technology (UUST), Durham, NH, Aug 2005

    Google Scholar 

  • Turner JM, Kim JW (2017) Aeroacoustic source mechanisms of a wavy LE undergoing vortical disturbances. J Fluid Mech 811:582–611

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • van Nierop E, Alben S, Brenner MP (2008) How bumps on whale flippers delay stall: an aerodynamic model. Phys Rev Lett 100(5):054502

    Article  ADS  Google Scholar 

  • Wagner H, Weger M, Klaas M, Schröder W (2017) Features of owl wings that promote silent flight. Interface Focus 7(1):20160078

    Article  Google Scholar 

  • Watts P, Fish PE (2001) The influence of passive LE tubercles on wing performance. In: Proceedings of 12th international symposium on unmanned untethered submersible technology (UUST). Autonomous Undersea Systems Institute, Durham, NH

    Google Scholar 

  • Weber PW, Howle L, Murray M (2010) Lift, drag and cavitation onset on rudders with LE tubercles. Marine Technol 47(1):27–36

    Google Scholar 

  • Weber P, Howle L, Murray M, Miklosovic D (2011) Computational evaluation of the performance of lifting surfaces with LE protuberances. J Aircraft 48(2):591–600

    Article  Google Scholar 

  • Wei Z, Lian L, Zhong Y (2018a) Enhancing the hydrodynamic performance of a tapered swept-back wing through LE tubercles. Exp Fluids 59:103

    Article  Google Scholar 

  • Wei Z, New TH, Cui YD (2018) Aerodynamic performance and surface flow structures of LE tubercled tapered swept-back wings. AIAA J 56(1)

    Google Scholar 

  • Yoon HS, Hung PA, Jung JH, Kim MC (2011) Effect of the wavy LE on hydrodynamic characteristics for flow around low aspect ratio wing. Comput Fluids 49:276–289

    Article  MATH  Google Scholar 

  • Zhang M, Frendi A (2016) Effect of airfoil LE waviness on flow structures and noise. Int J Numer Meth Heat Fluid Flow 26(6):1821–1842

    Article  MATH  Google Scholar 

  • Zhang M, Wang G, Xu J (2013) Aerodynamic control of low-Reynolds-number airfoil with LE protuberances. AIAA J 51(8):1960–1971

    Article  ADS  Google Scholar 

  • Zhang MM, Wang GF, Xu JZ (2014) Experimental study of flow separation control on a low-Re airfoil using LE protuberance method. Exp Fluids 55(4):1710

    Article  Google Scholar 

  • Zhao M, Zhang M, Xu J (2017) Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with LE protuberances. Eng Appl Comput Fluid Mech 11(1):193–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kelso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rostamzadeh, N., Hansen, K., Kelso, R. (2020). Tubercled Wing Flow Physics and Performance. In: New, D., Ng, B. (eds) Flow Control Through Bio-inspired Leading-Edge Tubercles. Springer, Cham. https://doi.org/10.1007/978-3-030-23792-9_2

Download citation

Publish with us

Policies and ethics