Skip to main content

Biomimetics and the Application of the Leading-Edge Tubercles of the Humpback Whale Flipper

  • Chapter
  • First Online:
Flow Control Through Bio-inspired Leading-Edge Tubercles

Abstract

The field of biomimetics attempts to inspire and integrate the morphology and function of biological organisms into the design of human-made technology. In that organisms have been able to adapt through evolution, they have performed the “cost-benefit analysis” to solve a variety of problems of concern to humans and can potentially improve technologies. One example of a structural adaptation that can improve the aero/hydrodynamic performance of wing-like designs is based on the flippers of the humpback whale . The humpback whale is able produce small radius turns with its elongate, high aspect ratio flippers. This whale differs from related species in using maneuverability to capture prey. Maintenance of lift throughout a turning maneuver requires a modification of the wing-like flippers. The flippers possess rounded bumps , called tubercles , along the leading-edge. Empirical and computational studies have demonstrated that the tubercles passively modify the flow over wing-like structures. The flow between the tubercles produces counter-rotating vortices in a sacrificed separation that helps to energize the flow over the tubercles. The flow pattern over a wing induced by the tubercles increases lift, delays stall , and maintains low drag post stall. The tubercles have applications for aircraft wings, rudders, dive planes, skegs, sailboat masts, stabilizers, truck mirrors, bicycle wheels, rotor blades , propellers , compressors, pumps, fans , and tidal and wind turbines .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abate G, Mavris DN (2018) Performance analysis of different positions of leading edge tubercles on a wind turbine blade. In: 2018 Wind Energy Symposium, AIAA SciTech Forum, 8–12 January 2018, Kissimmee, FL

    Google Scholar 

  • Abbott IH, von Doenhoff AE (1949) Theory of wing sections. Dover Publ, New York

    Google Scholar 

  • Afroz F, Lang A, Habegger ML, Motta P, Hueter (2017) Experimental study of laminar and turbulent boundary layer separation control of shark skin. Bioinsp Biomim 12:016009

    Google Scholar 

  • Aftab SMA, Razak NA, Mohd Rafie AS, Ahmad KA (2016) Mimicking the humpback whale: an aerodynamic perspective. Prog Aerospace Sci 84:48–69

    Article  ADS  Google Scholar 

  • Alexander RMcN (1983) Animal mechanics. Blackwell, Oxford

    Google Scholar 

  • Alexander RMcN (1985) The ideal and the feasible: physical constraints on evolution. Biol J Linn Soc 26:345–358

    Google Scholar 

  • Allen R (2010) Bulletproof feathers. University of Chicago Press, Chicago

    Google Scholar 

  • Anderson JD Jr (1998) A history of aerodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Anonymous (2010) Energy efficient fans take their cue from the humpback whale. Ontario Power Authority 4:1–4. http://archive.powerauthority.on.ca/Storage/122/16957_AgNews_July231.pdf

  • Bar-Cohen Y (2006) Biomimetics-using nature to inspire human innovation. Bioinsp Biomim 1:P1–P12

    Article  ADS  Google Scholar 

  • Bar-Cohen Y (2012) Biomimetics: nature-based innovation. CRC, Boca Raton

    Google Scholar 

  • Bauer D, Dunker T, Grill S, Kuhnel D (2013) Bionische Optimierung von LKW-Seitenspiegeln zur Verringerung des Gesamtwiderstandes (Bionic optimization of truck side mirrors). Report: Hochschule, University of Applied Sciences, Bremen

    Google Scholar 

  • Bearman PW, Owens JC (1998) Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines. J Fluids Struct 12:123–130

    Article  Google Scholar 

  • Bechert DW, Bruse M, Hage W (2000) Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28:403–412

    Article  Google Scholar 

  • Benyus J (1997) Biomimicry: innovation inspired by nature. HarperCollins, New York

    Google Scholar 

  • Berta A (2012) Return to the sea. University of California Press, Berkeley

    Book  Google Scholar 

  • Bertin JJ, Smith ML (1998) Aerodynamics for engineers. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature—an overview. Phil Trans Roy Soc A 367:1445–1486

    Article  ADS  Google Scholar 

  • Bolzon MD, Kelso RM, Arjomandi M (2015) Tubercles and their applications. J Aerosp Eng 29:04015013

    Article  Google Scholar 

  • Bonner N (1989) Whales of the World. Facts on File, New York

    Google Scholar 

  • Bradley J (2016) Zipp 454 NSW wheels take design cues from whales. Velonews, http://www.velonews.com/2016/11/news/zipp-454-nsw-wheels-take-design-cues-whales_424186

  • Burke J (1978) Connections. Little, Brown and Company, Boston

    Google Scholar 

  • Bushnell DM, Moore KJ (1991) Drag reduction in nature. Ann Rev Fluid Mech 23:65–79

    Article  ADS  Google Scholar 

  • Cai C, Zuo Z, Maeda T, Kamada Y, Li Q, Shimamoto K, Liu S (2017) Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances. Phys Fluids 29:115110

    Article  ADS  Google Scholar 

  • Câmara JFD, Sousa JMM (2013) Numerical study on the use of a sinusoidal leading edge for passive stall control at low Reynolds number. 51st AIAA Aerospace Sciences Meeting, 7–10 Jan 2013, Grapevine, TX

    Google Scholar 

  • Chen H, Wang JJ (2014) Vortex structures for flow over a delta wing with sinusoidal leading edge. Exp Fluids 55(6):1–9

    Article  Google Scholar 

  • Chen H, Pan C, Wang J (2013) Effects of sinusoidal leading edge on delta wing performance and mechanism. Sci China Tech Sci 56(3):772–779

    Article  Google Scholar 

  • Chittleborough RG (1953) Aerial observations on the humpback whales, Megaptera nodosa (Bonnaterre), with notes on other species. Aust J Mar Freshwater Res 4:219–226

    Article  Google Scholar 

  • Clair V, Polacek C, Le Garrec T, Reboul G, Gruber M, Joseph P (2013) Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edges. AIAA J. 51(11):2695–2713

    Article  ADS  Google Scholar 

  • Conlisk AT (1997) Modern helicopter aerodynamics. Ann Rev Fluid Mech 29:515–567

    Article  ADS  MathSciNet  Google Scholar 

  • Cooper LN, Dawson SD, Reidenberg JS, Berta A (2007) Neuromuscular anatomy and evolution of the cetacean forelimb. Anat Rec 290:1121–1137

    Article  Google Scholar 

  • Cooper LN, Sedano N, Johannson S, May B, Brown J, Holliday C, Kot W, Fish FE (2008) Hydrodynamic performance of the minke whale (Balaenoptera acutorostrata) flipper. J Exp Biol 211(12):1859–1867

    Article  Google Scholar 

  • Corsini A, Delibra G, Sheard AG (2013) On the role of leading-edge bumps in the control of stall onset in axial fan blades. J Fluids Eng 135(8):081104

    Article  Google Scholar 

  • Corsini A, Delibra G, Sheard AG (2014) The application of sinusoidal blade-leading edges in a fan-design methodology to improve stall resistance. Proc Instit Mech Eng Part A: J Power Energy 228(3):255–271

    Article  Google Scholar 

  • Coxworth B (2012) Humpback whales inspire better helicopter rotor blades. New Atlas. https://newatlas.com/humpback-whales-rotor-blades/21332/

  • Craig GM (2002) Introduction to aerodynamics. Regenerative Press, Anderson, IN

    Google Scholar 

  • Crisp DJ (1955) The behaviour of barnacle cyprids in relation to water movement over a surface. J Exp Biol 32:569–590

    Google Scholar 

  • Crisp DJ, Stubbings HG (1957) The orientation of barnacles to water currents. J Anim Ecol 26:179–196

    Article  Google Scholar 

  • Custodio D, Henoch C, Johari H (2010) The performance of finite-span hydrofoils with humpback whale-like leading edge protuberances. 64th Annual Meeting APS Division of Fluid Dynamics, vol. 55, No. 16, 21 Nov 2010, Long Beach, CA

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Dewar SW, Watts P, Fish FE (2013) Turbine and compressor employing tubercle leading edge rotor design. US Patent 8535008 B2, 17 Sept 2013

    Google Scholar 

  • Dropkin A, Custodio D, Henoch CW, Johari H (2012) Computation of flow field around an airfoil with leading edge protuberances. J Aircraft 49(5):1336–1344

    Article  Google Scholar 

  • Edel RK, Winn HE (1978) Observations on underwater locomotion and flipper movement of the humpback whale Megaptera novaeangliae. Mar Biol 48:279–287

    Article  Google Scholar 

  • Erickson GE (1995) High angle-of-attack aerodynamics. Ann Rev Fluid Mech 27:45–88

    Article  ADS  Google Scholar 

  • Faber JA, Arrieta AF, Studart AR (2018) Bioinspired spring orgami. Science 359:1386–1391

    Article  ADS  Google Scholar 

  • Filho GB, De Costa AL, de Paula AA, De Lima GR (2018) A numerical investigation of the wavy leading edge phenomena at transonic regime. 2018 AIAA Aerospace Science Meeting

    Google Scholar 

  • Fish FE (1998) Imaginative solutions by marine organisms for drag reduction. In: Meng JCS (ed) Proceedings of the international symposium on seawater drag reduction, Newport, Rhode Island, pp 443–450

    Google Scholar 

  • Fish FE (2000) Limits of nature and advances of technology: What does biomimetics have to offer? In: Kato N, Suzuki Y (eds) Proceedings of the 1st international symposium on aqua bio-mechanisms/International seminar on aqua bio-mechanisms, Tokai University Pacific Center, Honolulu, Hawaii, pp 3–12

    Google Scholar 

  • Fish FE (2002) Balancing requirements for stability and maneuverability in cetaceans. Integr Comp Biol 42(1):85–93

    Article  Google Scholar 

  • Fish FE (2006) Limits of nature and advances of technology in marine systems: What does biomimetics have to offer to aquatic robots? Appl Bionics Biomech 3(1):49–60

    Article  Google Scholar 

  • Fish FE, Battle JM (1995) Hydrodynamic design of the humpback whale flipper. J Morph 225:51–60

    Article  Google Scholar 

  • Fish FE, Beneski JT (2014) Evolution and bio-inspired design: natural limitations. In: Goel A, McAdams DA, Stone RB (eds) Biologically inspired design: computational methods and tools. Springer, London, pp 287–312

    Chapter  Google Scholar 

  • Fish FE, Kocak DM (2011) Biomimetics and marine technology: an introduction. Mar Tech Soc J 45(4):8–13

    Article  Google Scholar 

  • Fish FE, Lauder GV (2006) Passive and active flow control by swimming fishes and mammals. Ann Rev Fluid Mech 38:193–224

    Google Scholar 

  • Fish FE, Lauder GV (2017) Control surfaces of aquatic vertebrates in relation to swimming modes. J Exp Biol 220:4351–4363

    Article  Google Scholar 

  • Fish FE, Rohr J (1999) Review of dolphin hydrodynamics and swimming performance. SPAWARS Systems Center Technical Report 1801, San Diego, CA

    Google Scholar 

  • Fish FE, Howle LE, Murray MM (2008) Hydrodynamic flow control in marine mammals. Integr Comp Biol 211:1859–1867

    Google Scholar 

  • Fish FE, Weber PW, Murray MM, Howle LE (2011a) The humpback whale’s flipper: application of bio-inspired tubercle technology. Integr Comp Biol 51:203–213

    Article  Google Scholar 

  • Fish FE, Weber PW, Murray MM, Howle LE (2011b) Marine applications of the biomimetic humpback whale flipper. Mar Tech Soc J 45(4):198–207

    Article  Google Scholar 

  • Forbes P (2005) The gecko’s foot. Norton, New York

    Google Scholar 

  • Friedlaender AS, Hazen EL, Nowacek DP, Halpin PN, Ware C, Weinrich MT, Hurst T, Wiley D (2009) Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution. Mar Ecol Prog Ser 395:91–100

    Article  ADS  Google Scholar 

  • Ginter CC, Fish FE, Marshall CD (2010) Morphological analysis of the bumpy profile of phocid vibrissae. Mar Mamm Sci 26:733–743

    Google Scholar 

  • Ginter CC, Böttger SA, Fish FE (2011) Morphology and microanatomy of harbor porpoise (Phocoena phocoena) dorsal fin tubercles. J Morph 272:27–33

    Article  Google Scholar 

  • Goldbogen JA, Calambokidis J, Shadwick RE, Oleson EM, McDonald MA, Hildebrand JA (2006) Kinematics of foraging dives and lunge-feeding in fin whales. J Exp Biol 209:1231–1244

    Article  Google Scholar 

  • Goldbogen JA, Calambokidis J, Croll DA, Harvey JT, Newton KM, Oleson EM, Schorr G, Shadwick R (2008) Foraging behavior of humback whales: kinematics and respiratory patterns suggest a high cost for a lunge. J Exp Biol 211:3712–3719

    Article  Google Scholar 

  • Goruney T, Rockwell D (2009) Flow past a delta wing with a sinusoidal leading edge: near-surface topology and flow structure. Exp Fluids 47:321–331

    Article  Google Scholar 

  • Gosline JM (1991) Efficiency and other criteria for evaluating the quality of structural biomaterials. In: Blake RW (ed) Efficiency and economy in animal physiology. Cambridge: Cambridge University Press, pp 43–64

    Google Scholar 

  • Gould SJ (1983) Hen’s teeth and horse’s toes. Norton, New York

    Google Scholar 

  • Gravish N, Lauder GV (2018) Robotics-inspired biology. J Exp Biol 221, jeb138438

    Google Scholar 

  • Gupta A, Alsultan A, Amano RS, Kumar S, Welsh AD (2013) Design and analysis of wind turbine blades: winglet, tubercle, and slotted. In: ASME Expo 2013, turbine technical conference and exposition

    Google Scholar 

  • Hain JHW, Carter GR, Kraus SD, Mayo CA, Winn HE (1982) Feeding behavior of the humpback whale, Megaptera novaeangliae, in the western North Atlantic. Fish Bull 80:259–268

    Google Scholar 

  • Hanke W, Witte M, Miersch L, Brede M, Oeffner J, Mark M, Hanke F, Leder A, Dehnhardt G (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672

    Article  Google Scholar 

  • Hansen KL, Kelso RM, Dally BB (2009) The effect of leading edge tubercle geometry on the performance of different airfoils. In: 7th World conferences experimental heat transfer, fluid mechanics thermodynamics, 28 June–03 July 2009, Krakow, Poland

    Google Scholar 

  • Hansen KL, Kelso RM, Doolan CJ (2010) Reduction of flow induced tonal noise through leading edge tubercle modifications. In: 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, 7–9 June 2010

    Google Scholar 

  • Hansen KL, Kelso RM, Dally BB (2011) Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA J 49:185–194

    Article  ADS  Google Scholar 

  • Hansen KL, Kelso RM, Doolan CJ (2012) Reduction of flow induced airfoil tonal noise using leading edge sinusoidal modifications. Acoust Aust 40:172–177

    Google Scholar 

  • Harman J (2013) The shark’s paintbrush: biomimicry and how nature is inspiring innovation. White Cloud Press, Ashland

    Google Scholar 

  • Harris JS (1989) An airplane is not a bird. Invent Tech 5:18–22

    Google Scholar 

  • Hazen EL, Friedlaender AS, Thompson MA, Ware CR, Weinrich MT, Halpin PN, Wiley DN (2009) Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae. Mar Ecol Prog Ser 395:75–89

    Article  ADS  Google Scholar 

  • Hertel H (1966) Structure, form, movement. Reinhold, New York

    Google Scholar 

  • Hoerner SF (1965) Fluid-dynamic drag. Published by author, Brick Town, NJ

    Google Scholar 

  • Howle LE (2009) WhalePower wenvor blade. A report in the efficiency of a WhalePower Corporations. 5 meter prototype wind turbine blade. BelleQuant Engineering, PLLC

    Google Scholar 

  • Ibrahim IH, New TH (2015) Tubercle modifications in marine propeller blades. In: 10th Pacific symposium on flow visualization and image processing. Naples, Italy, 15–18 June 2015

    Google Scholar 

  • Ibrahim M, Alsultan A, Shen S, Amano RS (2015) Advances in horizontal axis wind turbine blade designs: introduction of slots and tubercle. J Energy Resour Tech 137:051205

    Article  Google Scholar 

  • Ingebrigtsen A (1929) Whales caught in the North Atlantic and other seas. Rapp P-V Reun Cons Int Explor Mer 56:1–26

    Google Scholar 

  • Ingram J (2008) The Daily Planet book of cool ideas. Penguin, Toronto

    Google Scholar 

  • Johari H, Henoch C, Custodio D, Levshin A (2007) Effects of leading-edge protuberances on airfoil performance. AIAA J 45:2634–2642

    Article  ADS  Google Scholar 

  • Jurasz CM, Jurasz VP (1979) Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska. Sci Rep Whales Res Inst 31:69–83

    Google Scholar 

  • Kahn A (2017) Adapt: how humans are tapping into nature’s secrets to design and build a better future. St Martin’s Press, New York

    Google Scholar 

  • Kajiura SM, Forni JB, Summers AP (2003) Maneuvering in juvenile carcharhinid and sphyrnid sharks: the role of the hammerhead shark cephalofoil. Zoology 106:19–28

    Article  Google Scholar 

  • Katz SL, Jordan CE (1997) A case for building integrated models of aquatic locomotion that couple internal and external forces. In: Tenth international symposium on unmanned untethered submersible technolgy: proceedings of the special session on bio-engineering research related to autonomous underwater vehicles. Autonomous Undersea Systems Institute, Lee, NH, pp 135–152

    Google Scholar 

  • Keerthi MC, Rajeshwaran MS, Kushari A, De A (2016) Effect of leading-edge tubercles on compressor cascade performance. AIAA J 54(3):1–12

    Article  Google Scholar 

  • Kim JW, Haeri S, Joseph P (2016) On the reduction of aerofoil–turbulence interaction noise associated with wavy leading edges. J Fluid Mech 792:526–552

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kulkani S, Chapman C, Shah H, Parn EA, Edwards DJ (2018) Designing an efficient tidal turbine blade through bio-mimicry: a systematic review. J Eng Design Tech 16(1):101–124

    Article  Google Scholar 

  • Larrabee EE (1980) The screw propeller. Sci Am 243:134–148

    ADS  Google Scholar 

  • Lau ASH, Kim JW (2013) The effect of wavy leading edges on aerofoil-gust interaction noise. J Sound Vibr 332:6234–6253

    Article  ADS  Google Scholar 

  • Leighton T, Finfer D, Grover E, White P (2007) An acoustical hypothesis for the spiral bubble nets of humpback whales, and the implications for whale feeding. Acoustics Bull 32:17–31

    Google Scholar 

  • Leung K (2014) Investigation of wind turbine blades with tubercles. Adv Mat Res 1051:832–839

    Google Scholar 

  • Lewis CA (1978) A review of substratum selection in free-living and symbiotic cirripeds. In: Chia F-S, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 207–218

    Google Scholar 

  • Lillienthal O (1911) Birdflight as the basis of aviation. Longmans, Green

    Google Scholar 

  • Lohry MW, Clifton D, Martinelli L (2012) Characterization and design of tubercle leading-edge wings. ICCFD7–4302 Abstract

    Google Scholar 

  • Lohry MW, Martinelli L, Kollassch JS (2013) Genetic algorithm optimization of periodic wing protuberances for stall mitigation. In: Proceedings of 31st AIAA applied aerodynamics conference, vol 2905, pp 1–13

    Google Scholar 

  • Lu Y (2004) Significance and progress of bionics. J Bionics Eng 1:1–3

    Article  Google Scholar 

  • Luria SE, Gould SJ, Singer S (1981) A view of life. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Madier D (2014) Aerodynamic & mechanical updates 2014, vol 2. F1-Technical Files. http://www.f1-forecast.com/pdf/F1%20Season%202014%20-%20Aerodynamic%20and%20Mechanical%20Updates%20-%20Volume%20II.pdf

  • Madsen CJ, Herman LM (1980) Social and ecological correlates of cetacean vision and visual appearance. In: Herman LM (ed) Cetacean behavior: mechanisms & functions. RE Krieger Publication, Malabar, FL, pp 101–147

    Google Scholar 

  • Mai H, Dietz G, Geißler W, Richter K, Bosbach J, Richard H, de Goot K (2006) Dynamic stall control by leading edge vortex generators. American Helicopter Soc 62nd Annual Forum, Phoenix, AZ, 9–11 May 2006

    Google Scholar 

  • McCracken GF, Safi K, Kunz TH, Dechmann DKN, Swartz SM, Wikelski M (2018) Airplane tracking documents the fastest flight speeds recorded for bats. R Soc Open Sci 3:160398

    Article  Google Scholar 

  • McCullough D (2015) The Wright brothers. Simon & Schuster, New York

    Google Scholar 

  • Miklosovic DS, Murray MM, Howle LE, Fish FE (2004) Leading edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys Fluids 16(5):L39–L42

    Article  ADS  MATH  Google Scholar 

  • Minasian SM, Balcomb KC III, Foster L (1984) The world’s whales. Smithsonian Books, Washington, DC

    Google Scholar 

  • Mueller T (2008) Biomimetics: design by nature. Nat Geo 213:68–91

    Google Scholar 

  • Murray MM, Fish FE, Howle LE, Miklosovic DS (2005) Stall delay by leading edge tubercles on humpback whale flipper at various sweep angles. In: Proceedings of 14th international symposium unmanned untethered submersible technology. Autonomous Undersea Systems Institute, Durham, NH

    Google Scholar 

  • Murray M, Gruber T, Fredriksson D (2010) Effect of leading edge tubercles on marine tidal turbine blades. BAPS.2010.DFD.HC.6. In: 63rd Annual Meeting APS Division Fluid Dynamics, vol 55, No. 16, Long Beach, CA, 21 Nov 2010

    Google Scholar 

  • Nakaya K (1995) Hydrodynamic function of the head in the hammerhead sharks (Elasmobranchii: Sphyrnidae). Copeia 1995:330–336

    Article  Google Scholar 

  • Nishiwaki M (1972) General biology. In: Ridgway SH (ed) Mammals of the sea: biology and medicine. C C Thomas, Springfield, pp 3–204

    Google Scholar 

  • Norberg UM (1990) Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Springer, Berlin

    Book  Google Scholar 

  • Oeffner J, Lauder GV (2012) Hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215:785–796

    Article  Google Scholar 

  • Owen JC, Szewezyk AA, Bearman PW (2000) Suppression of karman vortex shedding. Gallery of fluid motion. Phys Fluids 12(9):1–13

    Article  ADS  Google Scholar 

  • Ozen CA, Rockwell D (2010) Control of vortical structures on a flapping wing via a sinusoidal leading-edge. Phys Fluids 22:021701

    Article  ADS  MATH  Google Scholar 

  • Paterson EG, Wilson RV, Stern F (2003) General-purpose parallel unsteady RANS CFD code for ship hydrodynamics. IIHR Hydroscience and Engineering Report 531. The University of Iowa, Iowa City, IA

    Google Scholar 

  • Pedro HTC, Kobayashi MH (2008) Numerical study of stall delay on humpback whale flippers. In: 46th AIAA Aerospace Meeting Exhibit, 7–10 Jan 2008, Reno, Nevada

    Google Scholar 

  • Petrin CE, Elbing BR, Martin T, Caire W, Thies ML (2018) Modification of drag on the ear of Brazilian free-tailed bats (Tadarida brasiliensis) via leading-edge tubercles. In: 2018 Fluid dynamics conference, AIAA Aviation Forum (AIAA 2018-2917)

    Google Scholar 

  • Pivorunas A (1979) The feeding mechanisms of baleen whales. Am Sci 67:432–440

    ADS  Google Scholar 

  • Polacsek C, Reboul G, Clair V, Le Garrec T, Deniau H (2011) Turbulence-airfoil interaction noise reduction using wavy leading edge: an experimental and numerical study. Proc Inter-Noise Congress 2011(2):4464–4474

    Google Scholar 

  • Potvin J, Goldbogen JA, Shadwick RE (2009) Passive versus active engulfment: verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera physalus. J R Soc Interface 6:1005–1025

    Article  Google Scholar 

  • Potvin J, Goldbogen JA, Shadwick RE (2012) Metabolic expenditures of lunge-feeding rorquals across scale: implications for the evolution of filter-feeding and the limits to maximum body size. PLoS ONE 7:e44854

    Article  ADS  Google Scholar 

  • Quinn S, Gaughran W (2010) Bionics—an inspiration for intelligent manufacturing and engineering. Robot Comput Integr Manuf 26(6):616–621

    Article  Google Scholar 

  • Ralston E, Swain G (2009) Bioinspiration-the solution for biofouling control. Bioinsp Biomim 4(1):015007

    Article  Google Scholar 

  • Reidenberg JS, Laitman JT (2007) Blowing bubbles: An aquatic adaptation that risks protection of the respiratory tract in humpback whales (Megaptera novaeangliae). Anat Rec 260:569–580

    Article  Google Scholar 

  • Ridgway SH, Harrison R (1985) Handbook of marine mammals, vol. 3: the sirenians and baleen whales. Academic Press, London

    Google Scholar 

  • Rostamzadeh N, Hansen KL, Kelso RM, Dally BB (2014) The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification. Phys Fluids 26(11):107101

    Article  ADS  Google Scholar 

  • Saadat M, Haj-Hariri H, Fish F (2010) Explanation of the effects of leading-edge tubercles on the aerodynamics of airfoils and finite wings. 63rd Annual Meeting APS Division Fluid Dynamics, vol 55, No. 16, 21 Nov 2010, Long Beach, CA

    Google Scholar 

  • Sandin RCL (2014) Aircraft tail surface with a leading edge section of undulating shape. US patent 8789793 B2, 29 July 2014

    Google Scholar 

  • Segre PS, Cade DE, Fish FE, Allen AN, Calambokidis J, Friedlander AS, Goldbogen JA (2016) Hydrodynamic properties of fin whale flippers predict rolling performance. J Exp Biol 219:3315–3320

    Article  Google Scholar 

  • Serson D, Meneghini JR, Sherwin SJ (2017) Direct numerical simulations of the flow around wings with spanwise waviness at a very low Reynolds number. Comput Fluids 146:117–124

    Article  MathSciNet  MATH  Google Scholar 

  • Shadwick RE, Goldbogen JA, Potvin J, Pyenson ND, Vogl AW (2013) Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales. J Exp Biol 216:2691–2701

    Article  Google Scholar 

  • Sharpe FA, Dill LM (1997) The behavior of Pacific herring schools in response to artificial humpback whale bubbles. Can J Zool 75:725–730

    Article  Google Scholar 

  • Shevell RS (1986) Aerodynamic anomalies: can CFD prevent or correct them? J Aircraft 23:641–649

    Article  Google Scholar 

  • Shi W, Rosli R, Atlar M, Norman R, Wang D, Yang W (2016) Hydrodynamic performance evaluation of a tidal turbine with leading-edge tubercles. Ocean Eng 117:246–253

    Article  Google Scholar 

  • Shi W, Atlar M, Norman R (2017) Detailed flow measurement of the field around tidal turbines with and without biomimetic leading-edge tubercles. Renew Energ 111:688–707

    Article  Google Scholar 

  • Shi W, Atlar M, Norman R (2018) Learning from humpback whales for improving the energy capturing performance of tidal turbine blades. In: Ölcer AI, Kitada M, Dalaklis D, Ballini F (eds) Trends and challenges in maritime energy management. Springer, Cham, pp 479–497

    Chapter  Google Scholar 

  • Stanway MJ (2008) Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. MS thesis, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Taubes G (2000) Biologists and engineers create a new generation of robots that imitate life. Science 288:80–83

    Article  Google Scholar 

  • Tomilin AG (1957) Mammals of the U.S.S.R. and adjacent countries. Vol. IX: Cetacea. Nauk S.S.S.R Moscow (English Translation, 1967, Israel Program for Scientific Translations, Jerusalem)

    Google Scholar 

  • True FW (1983) The whalebone whales of the Western North Atlantic. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Turner JM, Kim JW (2017) Aeroacoustic source mechanisms of a wavy leading edge undergoing vortical disturbances. J Fluid Mech 811:562–611

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • van Nierop EA, Alben S, Brenner MP (2008) How bumps on whale flippers delay stall: an aerodynamic model. Phys Rev Lett 100:054502-1–054502-4

    ADS  Google Scholar 

  • Vaughan TA (1986) Mammalogy. Sauders, Philadelphia

    Google Scholar 

  • Velcro SA (1955) Improvements in or relating to a method and a device for producing velvet type fabric. Switzerland Patent 721338

    Google Scholar 

  • Vincent J (1990) Structural biomaterials. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Vogel S (1981) Life in moving fluids. Willard Grant Press, Boston

    Google Scholar 

  • Vogel S (1988) Life’s devices. Princeton University Press, Princeton

    Google Scholar 

  • Vogel S (1994) Life in moving fluids. Princeton University Press, Princeton

    Google Scholar 

  • Vogel S (1998) Cat’s paws and catapults. WW Norton, New York

    Google Scholar 

  • von Mises R (1945) Theory of flight. Dover, New York

    Google Scholar 

  • Walsh MJ (1990) Riblets. Prog Astro Aero 123:203–261

    Google Scholar 

  • Wang J, Zhang C, Wu Z, Wharton J, Ren L (2017) Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures. J Sound Vib 394:46–58

    Article  ADS  Google Scholar 

  • Watts P, Fish FE (2001) The influence of passive, leading edge tubercles on wing performance. In: Proceedings of twelfth international symposium unmanned untethered submersible technology. Autonomous Undersea Systems Institute, Durham, NH

    Google Scholar 

  • Watts P, Fish FE (2002) Scalloped wing leading edge. US Patent 6,431,498, 13 Aug 2002

    Google Scholar 

  • Webb PW (1997) Designs for stability and maneuverability in aquatic vertebrates: What can we learn? In: Proceedings of tenth international symposium unmanned untethered submersible technology: proceedings of the special session on bio-engineering research related to autonomous underwater vehicles. Autonomous Undersea Systems Institute, Lee, NH, pp 86–103

    Google Scholar 

  • Weber PW, Howle LE, Murray MM, Fish FE (2009) Lift and drag performance of odontocete cetacean flippers. J Exp Biol 212:2149–2158

    Article  Google Scholar 

  • Weber PW, Howle LE, Murray MM (2010) Lift, drag and cavitation onset on rudders with leading edge tubercles. Mar Tech 47:27–36

    Google Scholar 

  • Weber PW, Howle LE, Murray MM, Miklosovic DS (2011) Computational evaluation of the performance of lifting surfaces with leading edge protuberances. J Aircraft 48:591–600

    Article  Google Scholar 

  • Weber PW, Howle LE, Murray MM, Reidenberg JS, Fish FE (2014) Hydrodynamic performance of the flippers of large-bodied cetaceans in relation to locomotor ecology. Mar Mamm Sci 30:413–432

    Article  Google Scholar 

  • Wegener PP (1991) What makes airplanes fly. Springer, New York

    Book  Google Scholar 

  • Weihs D (1981) Effects of swimming path curvature on the energetics of fish swimming. Fish Bull 79:171–176

    Google Scholar 

  • Weihs D (1993) Stability of aquatic animal locomotion. Cont Math 141:443–461

    Article  MATH  Google Scholar 

  • Whitehouse G (2011) Turbocled tubercles. SeaHorse 2011:28–29

    Google Scholar 

  • Wiley D, Ware C, Bocconcelli A, Cholewiak D, Friedlaender A, Thompson M, Weinrich M (2011) Underwater components of humpback whale bubble-net feeding behaviour. Behaviour 148:575–602

    Article  Google Scholar 

  • Wind Energy Institute of Canada (2008) WhalePower tubercle blade power performance testreport. Wind Energy Institute of Canada, North Cape

    Google Scholar 

  • Winn HE, Reichley NE (1985) Humpback whale Megaptera novaeangliae (Borowski, 1781). In: Ridgway SH, Harrison R (eds) Handbook of marine mammals, vol 3. The sirenians and baleen whales. Academic Press, London, pp 241–273

    Google Scholar 

  • Winn LK, Winn HE (1985) Wings in the sea: the humpback whale. University Press of New England, Hanover

    Google Scholar 

  • Woodward BL, Winn JP, Fish FE (2006) Morphological specializations of baleen whales associated with hydrodynamic performance and ecological niche. J Morph 267:1284–1294

    Article  Google Scholar 

  • Wu JZ, Vakili AD, Wu JM (1991) Review of the physics of enhancing vortex lift by unsteady excitation. Prog Aerosp Sci 28:73–131

    Article  MATH  Google Scholar 

  • Xingwei Z, Chaoying Z, Tao Z, Wenying J (2013) Numerical study on effect of leading-edge tubercles. Aircraft Eng Aerospace Tech 85:247–257

    Article  Google Scholar 

  • Zangerl R, Case GR (1973) Iniopterygia, a new order of chondrichthyan fishes from the Pennsylvanian of North America. Fieldiana Geol Mem 6:1–67

    Google Scholar 

  • Zhang RK, Wu JZ, Chen SY (2012) A new active control strategy for wind-turbine blades under off-design conditions. Int J Mod Phys Conf Ser 19:283–292

    Article  Google Scholar 

  • Zheng T, Qiang X, Teng J, Feng J (2018) Investigation of leading edge tubercles with different wavelengths in an annular compressor cascade. Int J Turbo Jet Eng 2018-02-09

    Google Scholar 

  • Zibkoff M (2009) Spoked bicycle wheel. US Patent Application US2009/0236902, 19 Mar 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Fish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fish, F.E. (2020). Biomimetics and the Application of the Leading-Edge Tubercles of the Humpback Whale Flipper. In: New, D., Ng, B. (eds) Flow Control Through Bio-inspired Leading-Edge Tubercles. Springer, Cham. https://doi.org/10.1007/978-3-030-23792-9_1

Download citation

Publish with us

Policies and ethics