Skip to main content

Mesenchymal Stem Cell Transplantation in Rheumatoid Arthritis

  • Chapter
  • First Online:
Stem Cell Transplantation for Autoimmune Diseases and Inflammation

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Rheumatoid arthritis represents a destructive cascade of both innate and adaptive immunity. In recent times, the use of stem cell transplantation in immune reeducation has been gaining an audience. There is a growing number of in vitro studies and several randomized controlled trials in human subjects. In this chapter we review the mechanism of inflammation in rheumatoid arthritis by looking at the different cells and mechanisms involved in innate and adaptive immunity. Mesenchymal stem cells appear to influence a multitude of inflammatory pathways involved in the pathogenesis of rheumatoid arthritis. We discuss the use of autologous and allogeneic mesenchymal stem cells in rheumatoid arthritis. We consider the different routes of administration of these cells including the intravenous and intra-articular route, and the role of priming mesenchymal stem cells. We also look at clinical trials, pitfalls, and limitations. Evidence suggests that mesenchymal stem cells seem to play a role in joint repair in pathological joints. The transplantation of these cells into the peripheral blood and joints of patients with rheumatoid arthritis who are refractory to conventional treatments have been shown to be both safe and effective. The main trials and tribulations that we face include the need for technological advancement in tissue engineering, and the task of discovering the correct target audience with a responsive phenotype for stem cell transplantation, as well as developing a standard method for the delivery of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buch MH. Defining refractory rheumatoid arthritis. Ann Rheum Dis. 2018;77:966–9.

    Article  CAS  Google Scholar 

  2. Mitrano TI, et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol. 2010;81:917–25.

    Article  Google Scholar 

  3. González PL, et al. Chorion mesenchymal stem cells show superior differentiation, immunosuppressive, and angiogenic potentials in comparison with haploidentical maternal placental cells. Stem Cells Transl Med. 2015;4:1109–21.

    Article  Google Scholar 

  4. Krampera M, et al. Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol. 2006;6:435–41.

    Article  CAS  Google Scholar 

  5. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928–42.

    Article  Google Scholar 

  6. Naylor AJ, Filer A, Buckley CD. The role of stromal cells in the persistence of chronic inflammation. Clin Exp Immunol. 2013;171:30–5.

    Article  CAS  Google Scholar 

  7. Janossy G, et al. Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immunoregulation. Lancet Lond Engl. 1981;2:839–42.

    Article  CAS  Google Scholar 

  8. Udalova IA, Mantovani A, Feldmann M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol. 2016;12:472.

    Article  CAS  Google Scholar 

  9. Macrophage plasticity, polarization, and function in health and disease - Shapouri-Moghaddam - 2018 - Journal of Cellular Physiology - Wiley Online Library. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.26429. Accessed 19 Sept. 2018.

  10. Ye L, et al. Interleukin-10 attenuation of collagen-induced arthritis is associated with suppression of interleukin-17 and retinoid-related orphan receptor γt production in macrophages and repression of classically activated macrophages. Arthritis Res Ther. 2014;16:R96.

    Article  Google Scholar 

  11. Kotake S, Yago T, Kawamoto M, Nanke Y. Role of osteoclasts and interleukin-17 in the pathogenesis of rheumatoid arthritis: crucial ‘human osteoclastology’. J Bone Miner Metab. 2012;30:125–35.

    Article  CAS  Google Scholar 

  12. Shigeyama Y, et al. Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum. 2000;43:2523–30.

    Article  CAS  Google Scholar 

  13. Xuan W, Qu Q, Zheng B, Xiong S, Fan G-H. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. J Leukoc Biol. 2015;97:61–9.

    Article  Google Scholar 

  14. Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr. 2009;19:61–72.

    Article  CAS  Google Scholar 

  15. Cho K-A, Park M, Kim Y-H, Ryu K-H, Woo S-Y. Mesenchymal stem cells inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via osteoprotegerin activity. Oncotarget. 2017;8:83419–31.

    PubMed  PubMed Central  Google Scholar 

  16. Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production - Lo - 2008 - Arthritis & Rheumatism - Wiley Online Library. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/art.23760. Accessed 19 Sept. 2018.

  17. Söderström K, et al. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci U S A. 2010;107:13028–33.

    Article  Google Scholar 

  18. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107:1484–90.

    Article  CAS  Google Scholar 

  19. Almeida CR, Caires HR, Vasconcelos DP, Barbosa MA. NAP-2 secreted by human NK cells can stimulate mesenchymal stem/stromal cell recruitment. Stem Cell Rep. 2016;6:466–73.

    Article  CAS  Google Scholar 

  20. Klareskog L, Amara K, Malmström V. Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol. 2014;26:72–9.

    Article  CAS  Google Scholar 

  21. Sennikov SV, et al. Maturation and cytokine production potential of dendritic cells isolated from rheumatoid arthritis patients peripheral blood and induced in vitro. Hum Immunol. 2016;77:930–6.

    Article  CAS  Google Scholar 

  22. Uccelli A, de Rosbo NK. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann N Y Acad Sci. 2015;1351:114–26.

    Article  Google Scholar 

  23. Jiang X-X, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105:4120–6.

    Article  CAS  Google Scholar 

  24. Wu J, et al. Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b. Biosci Rep. 2017;37. https://doi.org/10.1042/BSR20160436.

    Article  CAS  Google Scholar 

  25. Chiesa S, et al. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci. 2011;108:17384–9.

    Article  CAS  Google Scholar 

  26. Compromised Function of Regulatory T Cells in Rheumatoid Arthritis and Reversal by Anti-TNFα Therapy | JEM. Available at: http://jem.rupress.org/content/200/3/277. Accessed 19 Sept. 2018.

  27. An Increase in CD3+CD4+CD25+ Regulatory T Cells after Administration of Umbilical Cord-Derived Mesenchymal Stem Cells during Sepsis. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110338. Accessed 19 Sept. 2018.

  28. Luz-Crawford P, et al. Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells. 2016;34:483–92.

    Article  CAS  Google Scholar 

  29. Lee HK, et al. CCL2 deficient mesenchymal stem cells fail to establish long-lasting contact with T cells and no longer ameliorate lupus symptoms. Sci Rep. 2017;7:41258.

    Article  CAS  Google Scholar 

  30. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31:890–6.

    Article  Google Scholar 

  31. Ardakani AHG, Khan WS. The influence of ageing and gender in musculoskeletal stem cell. Curr Stem Cell Res Ther. 2018;13:432–7.

    Article  Google Scholar 

  32. Cipriani P, et al. Impaired endothelium-mesenchymal stem cells cross-talk in systemic sclerosis: a link between vascular and fibrotic features. Arthritis Res Ther. 2014;16:442.

    Article  Google Scholar 

  33. Sun LY, et al. Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus. 2007;16:121–8.

    Article  CAS  Google Scholar 

  34. Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A. Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets. 2009;8:110–23.

    Article  CAS  Google Scholar 

  35. Nauta AJ, et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood. 2006;108:2114–20.

    Article  CAS  Google Scholar 

  36. Liang J, et al. Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol. 2012;31:157–61.

    Article  Google Scholar 

  37. Lalu MM, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;e47559:7.

    Google Scholar 

  38. Wakitani S, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011;5:146–50.

    Article  Google Scholar 

  39. Liotta F, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling. Stem Cells. 2008;26:279–89.

    Article  CAS  Google Scholar 

  40. Role for Interferon-γ in the Immunomodulatory Activity of Human Bone Marrow Mesenchymal Stem Cells - Krampera - 2006 - STEM CELLS - Wiley Online Library. Available at: https://stemcellsjournals.onlinelibrary.wiley.com/doi/abs/10.1634/stemcells.2005-0008. Accessed 19 Sept. 2018.

  41. Dorronsoro A, et al. Human mesenchymal stromal cells modulate T-cell responses through TNF-α-mediated activation of NF-κB. Eur J Immunol. 2014;44:480–8.

    Article  CAS  Google Scholar 

  42. Croitoru-Lamoury J, Lamoury FMJ, Zaunders JJ, Veas LA, Brew BJ. Human mesenchymal stem cells constitutively express chemokines and chemokine receptors that can be upregulated by cytokines, IFN-β, and copaxone. J Interferon Cytokine Res. 2007;27:53–64.

    Article  CAS  Google Scholar 

  43. Schena F, et al. Interferon-γ–dependent inhibition of B cell activation by bone marrow–derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum. 2010;62:2776–86.

    Article  CAS  Google Scholar 

  44. Tian J, et al. IL-17 down-regulates the immunosuppressive capacity of olfactory ecto-mesenchymal stem cells in murine collagen-induced arthritis. Oncotarget. 2016;7:42953–62.

    PubMed  PubMed Central  Google Scholar 

  45. Han X, et al. Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ. 2014;21:1758–68.

    Article  CAS  Google Scholar 

  46. Daynes RA, Jones DC. Emerging roles of PPARS in inflammation and immunity. Nat Rev Immunol. 2002;2:748–59.

    Article  CAS  Google Scholar 

  47. Wang L, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013;22:3192–202.

    Article  CAS  Google Scholar 

  48. Ra JC, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med. 2011;9:181.

    Article  Google Scholar 

  49. Álvaro-Gracia JM, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis. 2017;76:196–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasim Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

To, K., Khan, W. (2019). Mesenchymal Stem Cell Transplantation in Rheumatoid Arthritis. In: Pham, P. (eds) Stem Cell Transplantation for Autoimmune Diseases and Inflammation. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-23421-8_4

Download citation

Publish with us

Policies and ethics