Skip to main content

Plasticity in the Morphology of Lactotrophs and Folliculo-Stellate Cells and Prolactin Secretion

  • Chapter
  • First Online:
Neurosecretion: Secretory Mechanisms

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 8))

  • 513 Accesses

Abstract

Prolactin is essential for lactation and has numerous additional functions in water and electrolyte balance, brain and behaviour, metabolism, growth and development, reproduction and immune regulation. Many of these functions converge in the physiological adaptive changes during pregnancy. The secretion of prolactin from anterior pituitary lactotroph cells is highly dynamic with large changes in secretion depending on physiological status. Three morphological types of lactotrophs, identified by electron microscopy, secrete prolactin and the relative proportions of each type vary with reproductive status. Due to newly developed tools and techniques including fluorescent protein identification of pituitary cell types and two-photon microscopy, there has been a surge in understanding of the 3D organisation of the anterior pituitary gland into cell networks and the functional plasticity of these networks. Networks of pituitary cells interconnected through junctional complexes were first demonstrated for folliculo-stellate cells and subsequently for somatotrophs, lactotrophs, gonadotrophs and corticotrophs. Network organisation is proposed to underlie the coordination of dramatically large changes in the output of pituitary hormones, for example the increase in prolactin required for lactation. This chapter will review lactotroph subtype structure and function and the importance of lactotroph networks and will consider functional plasticity with respect to the morphology of individual lactotrophs and folliculo-stellate cells in relation to seasonal differences in prolactin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alim Z, Hartshorn C, Mai O, Stitt I, Clay C, Tobet S, Boehm U (2012) Gonadotrope plasticity at cellular and population levels. Endocrinology 153(10):4729–44739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allaerts W, Vankelecom H (2005) History and perspectives of pituitary folliculo-stellate cell research. Eur J Endocrinol 153(1):1–12

    CAS  PubMed  Google Scholar 

  • Alonso G, Sanchez-Hormigo A, Loudes C, El Yandouzi T, Carmignac D, Faivre-Bauman A, Recolin B, Epelbaum J, Robinson IC, Mollard P, Méry PF (2007) Selective alteration at the growth-hormone-releasing-hormone nerve terminals during aging in GHRH-green fluorescent protein mice. Aging Cell 6(2):197–207

    CAS  PubMed  Google Scholar 

  • Boockfor FR, Frawley LS (1987) Functional variations among prolactin cells from different pituitary regions. Endocrinology 120(3):874–879

    CAS  PubMed  Google Scholar 

  • Briggman KL, Bock DD (2012) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22(1):154–161

    CAS  PubMed  Google Scholar 

  • Budry L, Lafont C, El Yandouzi T, Chauvet N, Conéjero G, Drouin J, Mollard P (2011) Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc Natl Acad Sci USA 108(30):12515–12520

    CAS  PubMed  Google Scholar 

  • Budzik J, Omer S, Morris JF, Christian HC (2014) Vascular endothelial growth factor secretion from pituitary foll.iculostellate cells: role of KATP channels. J Neuroendocrinol 26(2):111–210

    CAS  PubMed  Google Scholar 

  • Cardin J, Carbajal ME, Vitale ML (2000) Biochemical and morphological diversity among folliculo-stellate cells of the mink (Mustela vison) anterior pituitary. Gen Comp Endocrinol 120(1):75–87

    CAS  PubMed  Google Scholar 

  • Christian HC, Morris JF (2002) Rapid actions of 17β-oestradiol on a subset of lactotrophs in the rat pituitary. J Physiol 539:557–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christian HC, Rolls NJ, Morris JF (2000) Nongenomic actions of testosterone on a subset of lactotrophs in the male rat pituitary. Endocrinology 141(9):3111–3119

    CAS  PubMed  Google Scholar 

  • Christian HC, Chapman LP, Morris JF (2007) Thyrotrophin-releasing hormone, vasoactive intestinal peptide, prolactin-releasing peptide and dopamine regulation of prolactin secretion by different lactotroph morphological subtypes in the rat. J Neuroendocrinol 19(8):605–613

    CAS  PubMed  Google Scholar 

  • Christian HC, Imirtziadis L, Tortonese D (2015) Ultrastructural changes in lactotrophs and folliculo-stellate cells in the ovine pituitary during the annual reproductive cycle. J Neuroendocrinol 27(4):277–284

    CAS  PubMed  Google Scholar 

  • Cónsole GM, Jurado SB, Riccillo FL, Gómez Dumm CL (2000) Immunohistochemical and ultrastructural study of pituitary folliculostellate cells during aging in rats. Cells Tissues Organs 167(1):25–32

    PubMed  Google Scholar 

  • Davies E, Omer S, Morris JF, Christian HC (2007) The influence of 17beta-estradiol on annexin 1 expression in the anterior pituitary of the female rat and in a folliculo-stellate cell line. J Endocrinol 192(2):429–442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denef C (2008) Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 20(1):1–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dingemans KP, Feltkamp CA (1972) Nongranulated cells in the mouse adenohypophysis. Z Zellforsch Mikrosk Anat 124(3):387–405

    CAS  PubMed  Google Scholar 

  • El-Kasti MM, Christian HC, Huerta-Ocampo I, Stolbrink M, Gill S, Houston PA, Davies JS, Chilcott J, Hill N, Matthews DR, Carter DA, Wells T (2008) The pregnancy-induced increase in baseline circulating growth hormone in rats is not induced by ghrelin. J Neuroendocrinol 20(3):309–322

    CAS  PubMed  Google Scholar 

  • Farquhar MG, Reid JJ, Daniell LW (1978) Intracellular transport and packaging of prolactin: a quantitative electron microscope autoradiographic study of mammotrophs dissociated from rat pituitaries. Endocrinology 102(1):296–311

    Google Scholar 

  • Fauquier T, Guérineau NC, McKinney RA, Bauer K, Mollard P (2001) Folliculostellate cell network: a route for long-distance communication in the anterior pituitary. Proc Natl Acad Sci USA 98(15):8891–8896

    CAS  PubMed  Google Scholar 

  • Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci USA 105(8):2907–2912

    CAS  PubMed  Google Scholar 

  • Featherstone K, White MRH, Davis JRE (2012) The prolactin gene: a paradigm of tissue-specific gene regulation with complex temporal transcription dynamics. J Neuroendocrinol 24(7):977–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Featherstone K, Hey K, Momiji H, McNamara AV, Patist AL, Woodburn J, Spiller DG, Christian HC, McNeilly AS, Mullins JJ, Finkenstädt BF, Rand DA, White MR, Davis JR (2016) Spatially coordinated dynamic gene transcription in living pituitary tissue. elife 5:1–25

    Google Scholar 

  • Golan M, Hollander-Cohen L, Levavi-Sivan B (2016) Stellate cell networks in the teleost pituitary. Sci Rep 6:24426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grattan D, Kokay IC (2008) Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 20(6):752–763

    CAS  PubMed  Google Scholar 

  • Hodson DJ, Molino F, Fontanaud P, Bonnefont X, Mollard P (2010) Investigating and modelling pituitary endocrine network function. J Neuroendocrinol 22(12):1217–1225

    CAS  PubMed  Google Scholar 

  • Hodson DJ, Schaeffer M, Romanò N, Fontanaud P, Lafont C, Birkenstock J, Molino F, Christian H, Lockey J, Carmignac D, Fernandez-Fuente M, Le Tissier P, Mollard P (2012) Existence of long-lasting experience-dependent plasticity in endocrine cell networks. Nat Commun 3:605

    Google Scholar 

  • Horiguchi K, Yako H, Yoshida S, Fujiwara K, Tsukada T, Kanno N, Ueharu H, Nishihara H, Kato T, Yashiro T, Kato Y (2016) S100β-positive cells of mesenchymal origin reside in the anterior lobe of the embryonic pituitary gland. PLoS One 11(10):e0163981

    PubMed  PubMed Central  Google Scholar 

  • Huerta-Ocampo I, Christian HC, Thompson NM, El-Kasti MM, Wells T (2005) The Intermediate lactotroph: a morphologically distinct, ghrelin-responsive pituitary cell in the dwarf (dw/dw) rat. Endocrinology 146(11):5012–5023

    CAS  PubMed  Google Scholar 

  • Hughes L, Hawes C, Monteith S, Vaughan S (2014) Serial block face scanning electron microscopy—the future of cell ultrastructure imaging. Protoplasma 251(2):395–401

    PubMed  Google Scholar 

  • John CD, Christian HC, Morris JF, Flower RJ, Solito E, Buckingham JC (2004) Annexin 1 and the regulation of endocrine function. Trends Endocrinol Metab 15(3):103–109

    CAS  PubMed  Google Scholar 

  • Lafont C, Desarménien MG, Cassou M, Molino F, Lecoq J, Hodson D, Lacampagne A, Mennessier G, El Yandouzi T, Carmignac D, Fontanaud P, Christian H, Coutry N, Fernandez-Fuente M, Charpak S, Le Tissier P, Robinson IC, Mollard P (2010) Cellular in vivo imaging reveals coordinated regulation of pituitary microcirculation and GH cell network function. Proc Natl Acad Sci USA 107(9):4465–4470

    CAS  PubMed  Google Scholar 

  • Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P (2012) Anterior pituitary cell networks. Front Neuroendocrinol 33(3):252–266

    PubMed  Google Scholar 

  • Le Tissier P, Campos P, Lafont C, Romanò N, Hodson DJ, Mollard P (2016) An updated view of hypothalamic–vascular–pituitary unit function and plasticity. Nat Rev Endocrinol 13(5):257–267

    PubMed  Google Scholar 

  • Lincoln G, Clarke IJ, Hut RA, Hazlerigg DG (2006) Characterizing a mammalian circannual pacemaker. Science 314(5807):1941–1944

    CAS  PubMed  Google Scholar 

  • Meites J (1987) Importance of the neuroendocrine system in aging processes. Adv Biochem Psychopharmacol 43:283–292

    CAS  PubMed  Google Scholar 

  • Mollard P, Hodson DJ, Lafont C, Rizzoti K, Drouin J (2012) A tridimensional view of pituitary development and function. Trends Endocrinol Metab 23(6):261–269

    CAS  PubMed  Google Scholar 

  • Morris J, Christian H (2011) Folliculo-stellate cells: paracrine communicators in the anterior pituitary. Open Neuroendocrinol J 1865:77–89

    Google Scholar 

  • Morris JF, Christian HC, Chapman LP, Epton MJ, Buckingham JC, Ozawa H, Nishi M, Kawata M (2002) Steroid effects on secretion from subsets of lactotrophs: role of folliculo-stellate cells and annexin 1. Arch Physiol Biochem 110(1–2):54–61

    CAS  PubMed  Google Scholar 

  • Morris JF, Omer S, Davies E, Wang E, John C, Afzal T, Wain S, Buckingham JC, Flower RJ, Christian HC (2006) Lack of annexin 1 results in an increase in corticotroph number in male but not female mice. J Neuroendocrinol 18(11):835–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sbarbati A, Zancanaro C, Barbatelli G, Cinti S, Osculati F (1989) Ultrastructure of pituitary folliculo-stellate cells of lactating rat during treatment with 2-bromo-alpha-ergocriptine. Tissue Cell 21(6):841–847

    CAS  PubMed  Google Scholar 

  • Schechter J, Ahmad N, Weiner R (1988) Activation of anterior pituitary folliculo-stellate cells in the formation of estrogen-induced prolactin-secreting tumors. Neuroendocrinology 48(5):569–576

    CAS  PubMed  Google Scholar 

  • Shiotani Y (1980) An electron microscopic study on stellate cells in the rabbit adenohypophysis under various endocrine conditions. Cell Tissue Res 213(2):237–246

    CAS  PubMed  Google Scholar 

  • Shirasawa N, Kihara H, Yamaguchi S, Yoshimura F (1983) Pituitary folliculo-stellate cells immunostained with S-100 protein antiserum in postnatal, castrated and thyroidectomized rats. Cell Tissue Res 231(2):235–249

    CAS  PubMed  Google Scholar 

  • Stokreef JC, Reifel CW, Shin SH (1986) A possible phagocytic role for folliculo-stellate cells of anterior pituitary following estrogen withdrawal from primed male rats. Cell Tissue Res 243(2):255–261

    CAS  PubMed  Google Scholar 

  • Takahashi S (1995) Development and heterogeneity of prolactin cells. Intl Rev Cytol 157:33–98

    CAS  Google Scholar 

  • Vila-Porcile E (1972) Le reseau des cellules folliculo-stellaines et les follicles de l’adenohypophyse du rat (pars distalis). [The network of the folliculo-stellate cells and the follicles of the adenohypophysis in the rat (pars distalis)]. Z Zellforsch Mikrosk Anat 129(3):328–369

    CAS  PubMed  Google Scholar 

  • Vila-Porcile E, Barret A (1996) Structural and functional differences between prolactin cells from the inner and outer zones of the male rat anterior pituitary. Cell Tissue Res 284(2):247–259

    CAS  PubMed  Google Scholar 

  • Walker AM, Farquhar MG (1980) Preferential release of newly synthesized prolactin granules is the result of functional heterogeneity among mammotrophs. Endocrinology 107(4):1095–1104

    CAS  PubMed  Google Scholar 

  • Wood SH, Christian HC, Miedzinska K, Saer BR, Johnson M, Paton B, Yu L, McNeilly J, Davis JR, McNeilly AS, Burt DW, Loudon AS (2015) Binary switching of calendar cells in the pituitary defines the phase of the circannual cycle in mammals. Curr Biol 25(20):2651–2662

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen C. Christian .

Editor information

Editors and Affiliations

Key References: See Main List for Reference Details

Key References: See Main List for Reference Details

  • Denef (2008) Excellent, detailed review of paracrine signalling in the pituitary

  • Fauquier et al. (2001) First paper showing network organisation of a pituitary cell type.

  • Featherstone et al. (2016) Important paper that links transcriptional control of PRL to networks.

  • Hodson et al. (2012) Paper shows lactotroph network memory of prolactin demand after weaning.

  • Le Tissier et al. (2016) Excellent review that re-evaluates hypothalamic-vasculature-pituitary control.

  • Wood et al. (2015) Large study that reveals hypothalamic and pituitary plasticity with photoperiod.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christian, H.C. (2020). Plasticity in the Morphology of Lactotrophs and Folliculo-Stellate Cells and Prolactin Secretion. In: Lemos, J., Dayanithi, G. (eds) Neurosecretion: Secretory Mechanisms. Masterclass in Neuroendocrinology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-22989-4_9

Download citation

Publish with us

Policies and ethics