Skip to main content

Action Potential-Induced Ca2+ Influx for Both Acute and Sustained Insulin Secretion in Pancreatic Beta Cells

  • Chapter
  • First Online:
Neurosecretion: Secretory Mechanisms

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 8))

  • 492 Accesses

Abstract

Insulin is a key molecule to maintain glucose hemostasis in the body. In pancreatic beta cells, insulin secretion is triggered by Ca2+ and amplified by cAMP/PKA signaling pathway. In the past few years, several studies have shown that these two signaling pathways are coupled with each other, although the causal relationship between them is still obscure. By combining FRET imaging and electrophysiological methods, a recent report confirms the role of Ca2+ to activate cAMP/PKA pathway through adenylyl cyclase 8 (AC8), a Ca2+-stimulated AC isoform. Simultaneous recordings of PKA activity and insulin granule exocytosis suggest the dual roles of Ca2+ in insulin secretion: to trigger acute exocytosis directly and to maintain sustained insulin secretion via cAMP/PKA. Here, we briefly summarize the roles of Ca2+, cAMP/PKA, and adenylyl cyclase in glucose/GLP-1-mediated insulin secretion and the unique method used in these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ammala C, Ashcroft FM, Rorsman P (1993) Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells. Nature 363:356–358

    CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148:1160–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450:247–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC, Rizo J (2002) Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409

    CAS  PubMed  Google Scholar 

  • Dachicourt N, Serradas P, Giroix MH, Gangnerau MN, Portha B (1996) Decreased glucose-induced cAMP and insulin release in islets of diabetic rats: reversal by IBMX, glucagon, GIP. Am J Phys 271:E725–E732

    CAS  Google Scholar 

  • Dos Remedios CG, Miki M, Barden JA (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation. J Muscle Res Cell Motil 8:97–117

    PubMed  Google Scholar 

  • Dou H, Wang C, Wu X, Yao L, Zhang X, Teng S, Xu H, Liu B, Wu Q, Zhang Q, Hu M, Wang Y, Wang L, Wu Y, Shang S, Kang X, Zheng L, Zhang J, Raoux M, Lang J, Li Q, Su J, Yu X, Chen L, Zhou Z (2015) Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancreatic beta cells. Diabetologia 58:324–333

    CAS  PubMed  Google Scholar 

  • Dyachok O, Isakov Y, Sagetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439:349–352

    CAS  PubMed  Google Scholar 

  • Dyachok O, Idevall-Hagren O, Sagetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjarvi G, Gylfe E, Tengholm A (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37

    CAS  PubMed  Google Scholar 

  • Elangovan M, Day RN, Periasamy A (2002) Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J Microsc 205:3–14

    CAS  PubMed  Google Scholar 

  • Gallegos LL, Kunkel MT, Newton AC (2006) Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J Biol Chem 281:30947–30956

    CAS  PubMed  Google Scholar 

  • Gromada J, Høy F, Renström E, Bokvist K, Eliasson L, Gaboreanu AM, Göpel S, Rorsman P (1999) CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells. J Physiol 518:745–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guenifi A, Portela-Gomes GM, Grimelius L, Efendic S, Abdel-Halim SM (2000) Adenylyl cyclase isoform expression in non-diabetic and diabetic Goto-Kakizaki (GK) rat pancreas. Evidence for distinct overexpression of type-8 adenylyl cyclase in diabetic GK rat islets. Histochem Cell Biol 113:81–89

    CAS  PubMed  Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    CAS  PubMed  Google Scholar 

  • Henquin JC, Ishiyama N, Nenquin M, Ravier MA, Jonas JC (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51:S60–S67

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodson DJ, Mitchell RK, Marselli L, Pullen TJ, Gimeno Brias S, Semplici F, Everett KL, Cooper DM, Bugliani M, Marchetti P, Lavallard V, Bosco D, Piemonti L, Johnson PR, Hughes SJ, Li D, Li WH, Shapiro AM, Rutter GA (2014) Adcy5 couples glucose to insulin secretion in human islets. Diabetes 63:3009–3021

    PubMed  PubMed Central  Google Scholar 

  • Kasai H, Hatakeyama H, Kishimoto T, Liu TT, Nemoto T, Takahashi N (2005) A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. J Physiol 568:891–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landa LR Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW (2005) Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem 280:31294–31302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence GW, Dolly JO (2002) Multiple forms of SNARE complexes in exocytosis from chromaffin cells: effects of Ca2+, MgATP and botulinum toxin type A. J Cell Sci 115:667–673

    CAS  PubMed  Google Scholar 

  • Leech CA, Castonguay MA, Habener JF (1999) Expression of adenylyl cyclase subtypes in pancreatic beta-cells. Biochem Biophys Res Commun 254:703–706

    CAS  PubMed  Google Scholar 

  • Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch 411:137–146

    CAS  PubMed  Google Scholar 

  • Muller WA, Faloona GR, Aguilar-Parada E, Unger RH (1970) Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N Engl J Med 283:109–115

    CAS  PubMed  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    CAS  PubMed  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    CAS  PubMed  Google Scholar 

  • Ni Q, Ganesan A, Aye-Han NN, Gao X, Allen MD, Levchenko A, Zhang J (2011) Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat Chem Biol 7:34–40

    CAS  PubMed  Google Scholar 

  • Ohara-Imaizumi M, Nakamichi Y, Tanaka T, Ishida H, Nagamatsu S (2002) Imaging exocytosis of single insulin secretory granules with evanescent wave microscopy: distinct behavior of granule motion in biphasic insulin release. J Biol Chem 277:3805–3808

    CAS  PubMed  Google Scholar 

  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811

    CAS  PubMed  Google Scholar 

  • Raoux M, Vacher P, Papin J, Picard A, Kostrzewa E, Devin A, Gaitan J, Limon I, Kas MJ, Magnan C, Lang J (2015) Multilevel control of glucose homeostasis by adenylyl cyclase 8. Diabetologia 58:749–757

    CAS  PubMed  Google Scholar 

  • Renstrom E, Eliasson L, Rorsman P (1997) Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 502(Pt 1):105–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roger B, Papin J, Vacher P, Raoux M, Mulot A, Dubois M, Kerr-Conte J, Voy BH, Pattou F, Charpentier G, Jonas JC, Moustaid-Moussa N, Lang J (2011) Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells. Diabetologia 54:390–402

    CAS  PubMed  Google Scholar 

  • Rorsman P, Eliasson L, Renström E, Gronmada J, Barg S, Göpel S (2000) The cell physiology of biphasic insulin secretion. News Physiol Sci 15:72–77

    CAS  PubMed  Google Scholar 

  • Sasmal DK, Lu HP (2014) Single-molecule patch-clamp FRET microscopy studies of NMDA receptor ion channel dynamics in living cells: revealing the multiple conformational states associated with a channel at its electrical off state. J Am Chem Soc 136:12998–13005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J, Seino S (2007) Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 104:19333–19338

    CAS  PubMed  Google Scholar 

  • Von RĂĽden L, Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065

    Google Scholar 

  • Wan QF, Dong Y, Yang H, Lou X, Ding J, Xu T (2004) Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124:653–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu Q, Hu M, Liu B, Chai Z, Huang R, Wang Y, Xu H, Zhou L, Zheng L, Wang C, Zhou Z (2017) Ligand- and voltage-gated Ca2+ channels differentially regulate the mode of vesicular neuropeptide release in mammalian sensory neurons. Sci Signal 10:eaal1683

    PubMed  Google Scholar 

  • Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010

    CAS  PubMed  Google Scholar 

  • Willoughby D, Masada N, Wachten S, Pagano M, Halls ML, Everett KL, Ciruela A, Cooper DM (2010) AKAP79/150 interacts with AC8 and regulates Ca2+-dependent cAMP synthesis in pancreatic and neuronal systems. J Biol Chem 285:20328–20342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willoughby D, Everett KL, Halls ML, Pacheco J, Skroblin P, Vaca L, Klussmann E, Cooper DM (2012) Direct binding between Orai1 and Ac8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 5:Ra29

    PubMed  Google Scholar 

  • Zhu D, Zhang Y, Lam PP, Dolai S, Liu Y, Cai EP, Choi D, Schroer SA, Kang Y, Allister EM, Qin T, Wheeler MB, Wang CC, Hong WJ, Woo M, Gaisano HY (2012) Dual role of Vamp8 in regulating insulin exocytosis and islet beta cell growth. Cell Metab 16:238–249

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Li Zhou, Hongping Huang, Quanfeng Zhang, Younus M. Khan, and Changhe Wang for helpful comments. This work was supported by grants from the National Natural Science Foundation of China (31228010, 31171026, 31100597, 31327901, 31221002, 31330024, 31670843, 31521062, and 31400708) and the National Key Research and Development Program of China (2016YFA0500401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqiang Dou .

Editor information

Editors and Affiliations

Key References: See Main List for Reference Details

Key References: See Main List for Reference Details

  • Ammala et al. (1993). The role of cAMP/PKA pathway to potentiate insulin secretion was demonstrated for the first time in pancreatic beta cells.

  • Dou et al. (2015). This paper revealed the dual roles of Ca2+ in regulating insulin secretion, to trigger exocytosis directly, and to replenish pools of insulin granules via the AC-cAMP/PKA pathway.

  • Dyachok et al. (2008). Real-time monitoring of glucose-induced cAMP oscillation in beta cells was achieved in this paper.

  • Ozaki et al. (2000). A Ca2+-cAMP-PKA circuit was studied thoroughly in pancreatic beta cells, by using a unique FRET-based PKA indicator, AKAR3.

  • Von RĂĽden and Neher (1993). The role of Ca2+ to replenish vesicle pools was first studied in this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dou, H., Zhou, Z. (2020). Action Potential-Induced Ca2+ Influx for Both Acute and Sustained Insulin Secretion in Pancreatic Beta Cells. In: Lemos, J., Dayanithi, G. (eds) Neurosecretion: Secretory Mechanisms. Masterclass in Neuroendocrinology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-22989-4_8

Download citation

Publish with us

Policies and ethics