Skip to main content

Neurosecretion: A Historical Overview

  • Chapter
  • First Online:
Neurosecretion: Secretory Mechanisms

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 8))

  • 549 Accesses

Abstract

The conceptual and experimental origins of neurosecretion are discussed. The discovery of the neurosecretory cell by the Scharrers and Bargmann and their insights that this cell type possessed the characteristics of both endocrine cells and neurons are presented. A fundamental feature of the neurosecretory cell, also referred to as a neuroendocrine cell, is the presence of many large dense core vesicles (neurosecretory vesicles) in its cytoplasm. The role of neurosecretory vesicles in the biosynthesis and secretion of the prototypic neurohormones, oxytocin and vasopressin, in the hypothalamo-neurohypophysial system is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acher R (1968) Neurophysin and neurohypophysial hormones. Proc R Soc Lond B Biol Sci 170:7–16

    Article  CAS  PubMed  Google Scholar 

  • Acher R, Chauvet J (1953) The structure of bovine vasopressin. Biochim Biophys Acta 12:487–488

    Article  CAS  PubMed  Google Scholar 

  • Acher R, Chauvet J, Fromageot P (1952) The way of linkage of some amino acids in vasopressin of cattle. Biochim Biophys Acta 9:471–472

    Article  CAS  PubMed  Google Scholar 

  • Acher R, Manoussos G, Olivry G (1955) Relation between oxytocin and Van Dyke’s protein and between vasopressin and Van Dyke’s protein. Biochim Biophys Acta 16:155–156

    Article  CAS  PubMed  Google Scholar 

  • Acher R, Chauvet J, Olivry G (1956) The actual existence of a single pituitary hormone. I. Relation between the oxytocin, vasopressin, and Van Dyke’s protein, extracted from bovine pituitary. Biochim Biophys Acta 22:421–427

    Article  CAS  PubMed  Google Scholar 

  • Acher R, Chauvet J, Chauvet MT (1967) Phylogeny of the neurohypophysial hormones. Nature 216:1037–1038

    Article  CAS  PubMed  Google Scholar 

  • Arch S, Gainer H (1985) Neurosecretion. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Publishing, New York

    Google Scholar 

  • Bargmann W, Scharrer E (1949) Ãœber die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z Zellforsch Mikroskop Anat 34:610–634

    CAS  Google Scholar 

  • Bargmann W, Scharrer E (1951) The site of origin of the hormones of the posterior pituitary. Am Sci 39:255–259

    CAS  PubMed  Google Scholar 

  • Bargmann W, Hild W, Ortmann R, Schiebler TH (1950) Morphologische und experimentelle Untersuchungen über das hypothalamisch-hypophysäre system. Acta Neuroveg 1:233–275

    Article  CAS  Google Scholar 

  • Beets I, Janssen T, Meelkop E, Temmerman L, Suetens N, Rademakers S, Jansen G, Schoofs L (2012) Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans. Science 338:543–545

    Article  CAS  PubMed  Google Scholar 

  • Biran J, Tahor M, Wircer E, Levkowitz G (2015) Role of developmental factors in hypothalamic function. Front Neuroanat 9:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Block RJ, Van Dyke HB (1950) Amino acids in posterior pituitary protein. Nature 165:975–976

    Article  CAS  PubMed  Google Scholar 

  • Breathnach CS, Moynihan JB (2013) First ladies in laying the foundation of neuroendocrinology. Ir J Med Sci 182:143–147

    Article  CAS  PubMed  Google Scholar 

  • Breslow E (1979) Chemistry and biology of the neurophysins. Annu Rev Biochem 48:251–274

    Article  CAS  PubMed  Google Scholar 

  • Breslow E, Abrash L (1966) The binding of oxytocin and oxytocin analogues by purified bovine neurophysins. Proc Natl Acad Sci USA 56:640–646

    Article  CAS  PubMed  Google Scholar 

  • Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207:373–378

    Article  CAS  PubMed  Google Scholar 

  • Castel M, Gainer H, Dellmann H-D (1984) Neuronal secretory systems. Int Rev Cytol 88:303–459

    Article  CAS  PubMed  Google Scholar 

  • Chaiken IM, Tamaoki H, Brownstein MJ, Gainer H (1983) Onset of neurophysin self-association upon neurophysin/neuropeptide hormone precursor biosynthesis. FEBS Lett 164:361–365

    Article  CAS  PubMed  Google Scholar 

  • Cross BA, Green JD (1959) Activity of single neurones in the hypothalamus: effect of osmotic and other stimuli. J Physiol 148:554–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz LJ, de Santos V, Zafaralla GC, Ramilo CA, Zeikus R, Gray WR, Olivera BM (1987) Invertebrate vasopressin/oxytocin homologs. Characterization of peptides from Conus geographus and Conus straitus venoms. J Biol Chem 262:15821–15824

    CAS  PubMed  Google Scholar 

  • Dale HH (1906) On some physiological actions of ergot. J Physiol 34:163–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale HH (1909) The action of extracts of the pituitary body. Biochem J 4:427–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale HH (1957) Evidence concerning the endocrine function of the neurohypophysis and its nervous control. Butterworth, London

    Google Scholar 

  • de Bree FM (2000) Trafficking of the vasopressin and oxytocin prohormone through the regulated secretory pathway. J Neuroendocrinol 12:589–594

    Article  PubMed  Google Scholar 

  • Dikeakos JD, Mercure C, Lacombe MJ, Seidah NG, Reudelhuber TL (2007) PC1/3, PC2 and PC5/6A are targeted to dense core secretory granules by a common mechanism. FEBS J 274:4094–4102

    Article  CAS  PubMed  Google Scholar 

  • du Vigneaud V (1955) Oxytocin, the principal oxytocic hormone of the posterior pituitary gland: its isolation, structure, and synthesis. Experientia 10:9–26

    Google Scholar 

  • du Vigneaud V, Ressler C, Trippett S (1953a) The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J Biol Chem 205:949–957

    CAS  Google Scholar 

  • du Vigneaud V, Lawler H, Popenoe EA (1953b) Enzymic cleavage of glycinamide from vasopressin and a proposed structure for this pressorantidiuretic hormone of the posterior pituitary. J Am Chem Soc 75:4880–4881

    Article  Google Scholar 

  • du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG, Gordon S (1953c) The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J Am Chem Soc 75:4879–4880

    Article  Google Scholar 

  • du Vigneaud V, Gish DT, Katsoyannis PG (1954a) A synthetic preparation possessing biological properties associated with arginine-vasopressin. J Am Chem Soc 76:4751–4752

    Article  Google Scholar 

  • du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954b) The synthesis of oxytocin. J Am Chem Soc 76:3115–3121

    Article  Google Scholar 

  • du Vigneaud V, Gish GT, Katsoyannis PG, Hess G (1958) Synthesis of the pressor-antidiuretic hormone, arginine-vasopressin. J Am Chem Soc 80:3355–3358

    Article  Google Scholar 

  • Dudley H (1919) Some observations on the active principles of the pituitary gland. J Pharmacol Exp Ther 14:295–312

    CAS  Google Scholar 

  • Editorial (1928) Separation of the active principles of the posterior lobe of the pituitary gland. J Am Med Assoc 90:618–619

    Article  Google Scholar 

  • Farini F (1913) Diabete insipido ed opoterapia. Gazz Osped Clin 34:1135–1139

    Google Scholar 

  • Fernandez J, Fernandez MS (1972) Nervous system of the snail Helix aspersa. 3. Electron microscopic study of neurosecretory nerves and endings in the ganglionic sheath. Z Zellforsch Mikrosk Anat 135:473–482

    Article  CAS  PubMed  Google Scholar 

  • Fridberg G, Bern HA (1968) The urophysis and the caudal neurosecretory system of fishes. Biol Rev Camb Philos Soc 43:175–199

    Article  CAS  PubMed  Google Scholar 

  • Gaddum JH (1928) Some properties of the separated active principles of the pituitary (posterior lobe). J Physiol 65:434–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainer H (1977) Peptides in neurobiology. Plenum, New York

    Book  Google Scholar 

  • Gainer H, Chin H (1998) Molecular diversity in neurosecretion: reflections on the hypothalamo-neurohypophysial system. Cell Mol Neurobiol 18:211–230

    Article  CAS  PubMed  Google Scholar 

  • Gainer H, Sarne Y, Brownstein MJ (1977a) Neurophysin biosynthesis: conversion of a putative precursor during axonal transport. Science 195:1354–1356

    Article  CAS  PubMed  Google Scholar 

  • Gainer H, Sarne Y, Brownstein MJ (1977b) Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides. J Cell Biol 73:366–381

    Article  CAS  PubMed  Google Scholar 

  • Gainer H, Russell JT, Loh YP (1985) The enzymology and intracellular organization of peptide precursor processing: the secretory vesicle hypothesis. Neuroendocrinology 40:171–184

    Article  CAS  PubMed  Google Scholar 

  • Garrison JL, Macosko EZ, Bernstein S, Pokala N, Albrecht DR, Bargmann CI (2012) Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338:540–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraerts WP, Smit AB, Li KW, Hordijk PL (1992) The light green cells of Lymnaea: a neuroendocrine model system for stimulus-induced expression of multiple peptide genes in a single cell type. Experientia 48:464–473

    Article  CAS  PubMed  Google Scholar 

  • Goodson JL (2008) Nonapeptides and the evolutionary patterning of sociality. Prog Brain Res 170:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green JD, Harris GW (1947) The neurovascular link between the neurohypophysis and adenohypophysis. J Endocrinol 5:136–146

    Article  CAS  PubMed  Google Scholar 

  • Green JD, Harris GW (1949) Observation of the hypophysioportal vessels of the living rat. J Physiol 108:359–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillemin R (1978) Peptides in the brain: the new endocrinology of the neuron. Science 202:390–402

    Article  CAS  PubMed  Google Scholar 

  • Hara Y, Battey J, Gainer H (1990) Structure of mouse vasopressin and oxytocin genes. Brain Res Mol Brain Res 8:319–324

    Article  CAS  PubMed  Google Scholar 

  • Harris GW (1948a) Electrical stimulation of the hypothalamus and the mechanism of neural control of the adenohypophysis. J Physiol 107:418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris GW (1948b) Neural control of the pituitary gland. Physiol Rev 28:139–179

    Article  CAS  PubMed  Google Scholar 

  • Harris GW (1972) Humours and hormones. J Endocrinol 53:2–23

    CAS  PubMed  Google Scholar 

  • Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570

    Article  CAS  PubMed  Google Scholar 

  • Hope DB, Hollenberg MD (1968) Crystallization of complexes of neurophysins with vasopressin and oxytocin. Proc R Soc Lond B Biol Sci 170:37–47

    Article  CAS  PubMed  Google Scholar 

  • Kamm O, Aldrich TB, Grote IW, Rowe LW, Bugbee EP (1928) The active principles of the posterior lobe of the pituitary gland. J Am Chem Soc 50:573–601

    Article  CAS  Google Scholar 

  • Kandel E (1961) Electrical properties of hypothalamic neuroendocrine neurons. J Gen Physiol 47:691–717

    Article  Google Scholar 

  • Klowden MJ (2003) Contributions of insect research toward our understanding of neurosecretion. Arch Insect Biochem Physiol 53:101–114

    Article  CAS  PubMed  Google Scholar 

  • Knowles F (1974) Twenty years of neurosecretion. In: Volkrath FK, Vollrath L (eds) Neurosecretion—the final neuroendocrine pathway. Springer-Verlag, Berlin, pp 3–11

    Chapter  Google Scholar 

  • Land H, Schutz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295:299–303

    Article  CAS  PubMed  Google Scholar 

  • Land H, Grez M, Ruppert S, Schmale H, Rehbein M, Richter D, Schutz G (1983) Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA. Nature 302:342–344

    Article  CAS  PubMed  Google Scholar 

  • Lee AG, Cool DR, Grunwald WC Jr, Neal DE, Buckmaster CL, Cheng MY, Hyde SA, Lyons DM, Parker KJ (2011) A novel form of oxytocin in New World monkeys. Biol Lett 7:584–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh Y (ed) (1993) Mechanisms of intracellular trafficking and processing of proproteins. CRC, Boca Raton, FL

    Google Scholar 

  • Maddrell S, Nordmann J (1979) Neurosecretion. Blackie, Glasgow

    Google Scholar 

  • Michael DJ, Cai H, Xiong W, Ouyang J, Chow RH (2006) Mechanisms of peptide hormone secretion. Trends Endocrinol Metab 17:408–415

    Google Scholar 

  • Mohr E, Schmitz E, Richter D (1988) A single rat genomic DNA fragment encodes both the oxytocin and vasopressin genes separated by 11 kilobases and oriented in opposite transcriptional directions. Biochimie 70:649–654

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Gainer H (2004) Vesicles, neurosecretory. In: Adelman G, Smith B (eds) Encyclopedia of neuroscience. Elsevier Science, Amsterdam

    Google Scholar 

  • Oliver G, Schäfer EA (1895) On the physiological actions of extracts of pituitary body and other glandular organs. J Physiol Lond 18:277–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott I, Scott JC (1910) The action of infundibulum upon mammary secretion. Proc Soc Exp Biol 8:48–49

    Article  Google Scholar 

  • Palay SL (1945) The preoptic–hypophysial pathway in fishes. J Comp Neurol 82:129–143

    Article  Google Scholar 

  • Parkes AS (1930) On the synergism between oestrin and oxytocin. J Physiol 69:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paton DN, Watson A (1912) The actions of pituitrin, adrenalin and barium on the circulation of the bird. J Physiol 44:413–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickering B, Jones CW (1978) The neurophysins. Horm Proteins Peptides 5:104–158

    Google Scholar 

  • Raisman G (1997) An urge to explain the incomprehensible: Geoffrey Harris and the discovery of the neural control of the pituitary gland. Annu Rev Neurosci 20:533–566

    Article  CAS  PubMed  Google Scholar 

  • Sachs H, Haller EW (1968) Further studies on the capacity of the neurohypophysis to release vasopressin. Endocrinology 83:251–262

    Article  CAS  PubMed  Google Scholar 

  • Sachs H, Takabatake Y (1964) Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75:943–948

    Article  CAS  PubMed  Google Scholar 

  • Sachs H, Share L, Osinchak J, Carpi A (1967) Capacity of the neurohypophysis to release vasopressin. Endocrinology 81:755–770

    Article  CAS  PubMed  Google Scholar 

  • Sachs H, Fawcett P, Takabatake Y, Portanova R (1969) Biosynthesis and release of vasopressin and neurophysin. Recent Prog Horm Res 25:447–491

    CAS  PubMed  Google Scholar 

  • Sausville E, Carney D, Battey J (1985) The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem 260:10236–10241

    CAS  PubMed  Google Scholar 

  • Schafer E, Mackenzie K (1911) The action of animal extracts on milk secretion. Proc Soc Exp Biol 84:16–22

    CAS  Google Scholar 

  • Schally AV (1978) Aspects of hypothalamic regulation of the pituitary gland. Science 202:18–28

    Article  CAS  PubMed  Google Scholar 

  • Scharrer E (1928) Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen fiber das Zwischenhirn der Fische). Z Vergl Physiol 7:1–38

    Article  Google Scholar 

  • Scharrer E (1934) Zwischenhirndruse und Hautung bei der Erdkrote Bufo vulgaris. Verh Dtsch Zool Ges 1934:23–27

    Google Scholar 

  • Scharrer B (1987a) Neurosecretion: beginnings and new directions in neuropeptide research. Annu Rev Neurosci 10:1–17

    Article  CAS  PubMed  Google Scholar 

  • Scharrer B (1987b) Insects as models in neuroendocrine research. Annu Rev Entomol 32:1–16

    Article  CAS  PubMed  Google Scholar 

  • Scharrer E, Scharrer B (1937) Ãœber drüsen-nervenzellen und Neurosekretorische Organe bei wlrbellosen und wirbeltieren. Biol Rev 12:185–216

    Article  Google Scholar 

  • Scharrer E, Scharrer B (1940) Secretory cells within the hypothalamus. Res Publ Assoc Res Nerv Ment Dis 20:170–194

    Google Scholar 

  • Scharrer E, Scharrer B (1945) Neurosecretion. Physiol Rev 25:171–181

    Article  CAS  Google Scholar 

  • Scharrer E, Scharrer B (1954) Hormones produced by neurosecretory cells. Recent Prog Horm Res 10:183–240

    CAS  Google Scholar 

  • Seidah NG, Mayer G, Zaid A, Rousselet E, Nassoury N, Poirier S, Essalmani R, Prat A (2008) The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol 40:1111–1125

    Article  CAS  PubMed  Google Scholar 

  • Speidel C (1919) Gland-cells of internal secretion in the spinal cord of the skates. Carnegie Inst Wash Publ 13:1–31

    Google Scholar 

  • Speidel C (1922) Further comparative studies in other fishes of cells that are homologous to the large irregular glandular cells in the spinal cord of the skates. J Comp Neurol 34:303–312

    Article  Google Scholar 

  • Steiner DF, Cunningham D, Spigelman L, Aten B (1967) Insulin biosynthesis: evidence for a precursor. Science 157:697–700

    Article  CAS  PubMed  Google Scholar 

  • Takabatake Y, Sachs H (1964) Vasopressin biosynthesis. 3. In vitro studies. Endocrinology 75:934–942

    Article  CAS  PubMed  Google Scholar 

  • Tuppy H (1953) The amino-acid sequence in oxytocin. Biochim Biophys Acta 11:449–450

    Article  CAS  PubMed  Google Scholar 

  • Turner RA, Pierce JG, du Vigneaud V (1951) The purification and the amino acid content of vasopressin preparations. J Biol Chem 191:21–28

    CAS  PubMed  Google Scholar 

  • Urano A, Ando H (2011) Diversity of the hypothalamo-neurohypophysial system and its hormonal genes. Gen Comp Endocrinol 170:41–56

    Article  CAS  PubMed  Google Scholar 

  • Van Dyke H, Chow BF, Greep RO, Rothen A (1942) The isolation of a protein from the pars neuralis of the ox pituitary with constant oxytocic, pressor, and diuresis-inhibiting activities. J Pharm Exp Therap 74:190–209

    Google Scholar 

  • Van Dyke H, Chow BF, Greep RO, Rothen A (1970) Studies in neurohypophysial endocrinology. The Sir Henry Dale lecture for 1970. J Endocrinol 47:ix–xx

    Google Scholar 

  • van Kesteren RE, Smit AB, Dirks RW, de With ND, Geraerts WP, Joosse J (1992a) Evolution of the vasopressin/oxytocin superfamily: characterization of a cDNA encoding a vasopressin-related precursor, preproconopressin, from the mollusc Lymnaea stagnalis. Proc Natl Acad Sci USA 89:4593–4597

    Article  PubMed  Google Scholar 

  • van Kesteren RE, Smit AB, de With ND, van Minnen J, Dirks RW, van der Schors RC, Joosse J (1992b) A vasopressin-related peptide in the mollusc Lymnaea stagnalis: peptide structure, prohormone organization, evolutionary and functional aspects of Lymnaea conopressin. Prog Brain Res 92:47–57

    Article  PubMed  Google Scholar 

  • Von Velden R (1913) Die nierenwirkung von hypophysenextrakten meschen. Berl Klin Wochenscgr 50:2083–2086

    Google Scholar 

  • Wallis M (1975) The molecular evolution of pituitary hormones. Biol Rev Camb Philos Soc 50:35–98

    Article  CAS  PubMed  Google Scholar 

  • Wallis M (2012) Molecular evolution of the neurohypophysial hormone precursors in mammals: comparative genomics reveals novel mammalian oxytocin and vasopressin analogues. Gen Comp Endocrinol 179:313–318

    Article  CAS  PubMed  Google Scholar 

  • Watts AG (2011) Structure and function in the conceptual development of mammalian neuroendocrinology between 1920 and 1965. Brain Res Rev 66:174–204

    Article  CAS  PubMed  Google Scholar 

  • Weiss P (1944) Evidence of perpetual proximo-distal growth of nerve fibers. Biol Bull 87:160

    Google Scholar 

  • Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107:315–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang BJ, Kusano K, Zerfas P, Iacangelo A, Young WS 3rd, Gainer H (2002) Targeting of green fluorescent protein to secretory granules in oxytocin magnocellular neurons and its secretion from neurohypophysial nerve terminals in transgenic mice. Endocrinology 143:1036–1046

    Article  CAS  PubMed  Google Scholar 

  • Zuckerman S (1978) A skeptical neuroendocrinologist. Plenum, New York

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Gainer .

Editor information

Editors and Affiliations

Key References: See Main List for Reference Details

Key References: See Main List for Reference Details

  • Bargmann and Scharrer (1951) An important summary of the neurosecretion hypothesis in mammals.

  • du Vigneaud et al. (1953a, b, c) The first clear demonstration of the structure of the neuropeptide oxytocin.

  • Gainer et al. (1977a, b) First experimental evidence for the conversion of nonapeptide precursor conversion to peptide products during axonal transport.

  • Green and Harris (1947) Early study leading to the concept of the neuroendocrine control of adenohypopysial secretion.

  • Knowles (1974) Historically important symposium for the case for neurosecretion.

  • Maddrell and Nordmann (1979) Book summarizing the evidence for the concept and occurrence of Neurosecretion.

  • Raisman (1997) Role of Geoffrey Harris in the proposal of the hypothalamic control of adenohypopysial secretion.

  • Sachs et al. (1969) First paper to propose the existence of a vasopressin prohormon and its processing in secretory granules.

  • Scharrer (1928) The classical paper that first proposed the existence of neurosecretory cells.

  • Watts (2011) An excellent review of the history of neurosecretion leading to the field of neuroendocrinology.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gainer, H. (2020). Neurosecretion: A Historical Overview. In: Lemos, J., Dayanithi, G. (eds) Neurosecretion: Secretory Mechanisms. Masterclass in Neuroendocrinology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-22989-4_1

Download citation

Publish with us

Policies and ethics