Skip to main content

Nuclear Reaction Experiments

  • Conference paper
  • First Online:
Basic Concepts in Nuclear Physics: Theory, Experiments and Applications (RÁBIDA 2018)

Abstract

Nuclear reactions play an essential role to address the many-body problem of nuclear structure. Reactions are used to produce exotic nuclei, to populate specific nuclear states and the so-called direct reactions have been a unique tool to built up our representation of the nuclear shell structure. In this lecture, the basics of radioactive beam production are described and direct reactions are introduced. In particular, spectroscopic factors (SF) are defined and discussed. Transfer and knockout reactions are introduced in the light of today’s experiments and detection setups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One exception is the CARIBU facility at Argonne National Laboratory, USA, which relies on the production of radioactive ions from a high intensity radioactive source of Californium which releases fission fragments. CARIBU does not require any primary beam.

References

  1. E. Rutherford, Philos. Mag. 21, 669–688 (1911)

    Article  Google Scholar 

  2. G.F. Bertsch, D.J. Dean, W. Nazarewicz, SciDAC Rev. 6, 42 (2007)

    Google Scholar 

  3. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983)

    Google Scholar 

  4. T. Aumann et al., Phys. Rev. Lett. 119, 262501 (2017)

    Article  ADS  Google Scholar 

  5. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  6. H. Geissel, G. Munzinger, K. Riisager, Ann. Rev. Nucl. Part. 45, 163 (1995)

    Article  ADS  Google Scholar 

  7. D.C. Faircloth, Lecture Notes from CERN accelerator school. https://doi.org/10.5170/CERN-2013-001

  8. R. Gobin et al., Rev. Sci. Instrum. 81, 02B301 (2010)

    Article  Google Scholar 

  9. O. Bajeat et al., Nucl. Instrum. Methods Phys. Res. B 317, 411 (2013)

    Article  ADS  Google Scholar 

  10. B. Frois et al., Phys. Rev. Lett. 38, 152 (1976)

    Article  ADS  Google Scholar 

  11. B. Frois, C.N. Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987)

    Article  ADS  Google Scholar 

  12. M. Wakasugi, T. Suda, Y. Yano, Nucl. Instrum. Methods Phys. Res. 532, 216 (2004)

    Article  ADS  Google Scholar 

  13. T. Suda et al., Phys. Rev. Lett. 102, 102501 (2009)

    Article  ADS  Google Scholar 

  14. A.N. Antonov et al., Nucl. Instrum. Methods Phys. Res. A 637, 60 (2011)

    Article  ADS  Google Scholar 

  15. T. Suda, M. Wakasugi, Prog. Part. Nucl. Phys. 55, 417 (2005)

    Article  ADS  Google Scholar 

  16. A. Obertelli, T. Uesaka, Eur. Phys. J. A 47, 105 (2011)

    Article  ADS  Google Scholar 

  17. S. Ishimoto et al., Nucl. Instrum. Methods Res. A 480, 304 (2002)

    Article  ADS  Google Scholar 

  18. A. Gillibert et al., Eur. Phys. J. A 49, 155 (2013)

    Article  ADS  Google Scholar 

  19. C. Bertulani, Encyclopedia of Physics (Wiley-VCH, Berlin, 2009). ISBN-13: 978-3-527-40691-3

    Google Scholar 

  20. http://pro.ganil-spiral2.eu/spiral2/instrumentation/actar-tpc

  21. C.E. Demonchy et al., Nucl. Instrum. Methods Res. Phys. A 573, 145 (2007)

    Google Scholar 

  22. http://gaspard.in2p3.fr/index.html

  23. http://paris.ifj.edu.pl

  24. S. Akkoyun et al., Nucl. Instrum. Methods Res. Phys. A 688, 26 (2012)

    Google Scholar 

  25. E.C. Pollacco et al., Nucl. Instrum. Methods Res. Phys. A 421, 471 (1999)

    Google Scholar 

  26. M. Grieser et al., Eur. Phys. J. Spec. Top. 207, 1 (2012)

    Article  Google Scholar 

  27. http://www.nscl.msu.edu/exp/sr/attpc

  28. A.H. Wuosmaa et al., Nucl. Instrum. Methods Res. Phys. A 580, 1290 (2007)

    Google Scholar 

  29. M. Baranger, Nucl. Phys. A 149, 225 (1970)

    Article  ADS  Google Scholar 

  30. T. Duguet, G. Hagen, Phys. Rev. C 85, 034330 (2012)

    Article  ADS  Google Scholar 

  31. R.J. Furnstahl, H.-W. Hammer, Phys. Lett. B 531, 203 (2002)

    Article  ADS  Google Scholar 

  32. T. Duguet, H. Hergert, J.D. Holt, V. Soma, Phys. Rev. C 92, 034313 (2015)

    Article  ADS  Google Scholar 

  33. V. Lapoux, N. Alamanos, Eur. Phys. J. A 51, 91 (2015)

    Article  ADS  Google Scholar 

  34. L.D. Knutson, W. Haeberli, Prog. Part. Nucl. Phys. 3, 127 (1980)

    Article  ADS  Google Scholar 

  35. C. Thibault et al., Phys. Rev. C 12, 644 (1975)

    Article  ADS  Google Scholar 

  36. C. Détraz et al., Phys. Rev. C 19, 164 (1979)

    Article  ADS  Google Scholar 

  37. D. Guillemaud-Mueller et al., Nucl. Phys. A 426, 37 (1984)

    Article  ADS  Google Scholar 

  38. T. Motobayashi et al., Phys. Lett. B 346, 9 (1995)

    Article  ADS  Google Scholar 

  39. J. Dobaczewski, I. Hamamoto, W. Nazarewicz, J.A. Sheikh, Phys. Rev. Lett. 72, 981 (1994)

    Article  ADS  Google Scholar 

  40. T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)

    Article  ADS  Google Scholar 

  41. A.P. Zuker, Phys. Rev. Lett. 91, 179201 (2003)

    Article  ADS  Google Scholar 

  42. T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005)

    Article  ADS  Google Scholar 

  43. T. Otsuka, T. Matsuo, D. Abe, Phys. Rev. Lett. 97, 162501 (2006)

    Article  ADS  Google Scholar 

  44. T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 76, 014312 (2007)

    Article  ADS  Google Scholar 

  45. M. Bender et al., Phys. Rev. C 80, 064302 (2009)

    Article  ADS  Google Scholar 

  46. S. Bogner, R. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

    Article  ADS  Google Scholar 

  47. T. Otsuka et al., Phys. Rev. Lett. 105, 032501 (2010)

    Article  ADS  Google Scholar 

  48. O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008)

    Article  ADS  Google Scholar 

  49. J.P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004)

    Article  ADS  Google Scholar 

  50. A. Obertelli et al., Phys. Lett. B 633, 33 (2006)

    Article  ADS  Google Scholar 

  51. S.M. Brown et al., Phys. Rev. C 85, 011302(R) (2012)

    Article  ADS  Google Scholar 

  52. J.R. Terry et al., Phys. Lett. B 640, 86 (2006)

    Article  ADS  Google Scholar 

  53. K.L. Jones et al., Nature 465, 454 (2010)

    Article  ADS  Google Scholar 

  54. G. Potel, A. Idini, F. Barranco, E. Vigezzi, R.A. Broglia, Rep. Prog. Phys. 76, 106301 (2013)

    Article  ADS  Google Scholar 

  55. P.D. Duval, D. Goutte, M. Vergnes, Phys. Lett. B 124, 297 (1983)

    Article  ADS  Google Scholar 

  56. I. Tanihata et al., Phys. Rev. Lett. 100, 192502 (2008)

    Article  ADS  Google Scholar 

  57. G. Potel, F. Barranco, E. Vigezzi, R.A. Broglia, Phys. Rev. Lett. 105, 172502 (2010)

    Article  ADS  Google Scholar 

  58. M. Assié, D. Lacroix, Phys. Rev. Lett. 102, 202501 (2009)

    Article  ADS  Google Scholar 

  59. G. Potel et al., Phys. Rev. Lett. 107, 092501 (2011)

    Article  ADS  Google Scholar 

  60. G. Jacob, ThAJ Maris, Rev. Mod. Phys. 38, 121 (1966)

    Article  ADS  Google Scholar 

  61. G. Jacob, Th.A.J. Maris, Rev. Mod. Phys. 45, 6 (1973)

    Article  ADS  Google Scholar 

  62. J. Kelly, Adv. Nucl. Phys. 23, 75 (1996)

    Article  Google Scholar 

  63. A. Dieperink et al., Annu. Rev. Nucl. Part. Sci. 40, 239 (1990)

    Article  ADS  Google Scholar 

  64. S. Boffi et al., Phys. Rep. 226, 1 (1993)

    Article  ADS  Google Scholar 

  65. J. Mougey et al., Nucl. Phys. A 262, 461 (1976)

    Article  ADS  Google Scholar 

  66. P. deWitt-Huberts, J. Phys. G 16, 507 (1990)

    Google Scholar 

  67. L. Lapikas, Nucl. Phys. A 553, 297 (1993)

    Article  ADS  Google Scholar 

  68. V. Panin et al., Phys. Lett. B 753, 204 (2015)

    Article  ADS  Google Scholar 

  69. T. Aumann, C.A. Bertulani, J. Ryckebusch, Phys. Rev. C 88, 064610 (2013)

    Article  ADS  Google Scholar 

  70. K. Ogata, K. Yoshida, K. Minomo, Phys. Rev. C 92, 034616 (2015)

    Article  ADS  Google Scholar 

  71. R. Crespo, A. Deltuva, E. Cravo, Phys. Rev. C 90, 044606 (2014)

    Article  ADS  Google Scholar 

  72. R. Crespo, A. Deltuva, E. Cravo, Phys. Rev. C 93, 054612 (2016)

    Article  ADS  Google Scholar 

  73. M. Yosoi et al., Phys. Lett. B 551, 255 (2003)

    Article  ADS  Google Scholar 

  74. M. Yosoi et al., Nucl. Phys. A 738, 451 (2004)

    Article  ADS  Google Scholar 

  75. Technical Proposal, http://www-win.gsi.de/r3b/Documents/R3B-TP-Dec05.pdf

  76. P.G. Hansen, J.A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003)

    Article  ADS  Google Scholar 

  77. A. Bonaccorso, Phys. Scr. T 152, 014019 (2013)

    Article  ADS  Google Scholar 

  78. A. Bonaccorso, JPS Conf. Proc. 6, 010023 (2015)

    Google Scholar 

  79. R. Serber, Phys. Rev. 72, 1008 (1947)

    Article  ADS  Google Scholar 

  80. R. Serber, Ann. Rev. Nucl. Part. Sci. 44, 1 (1994)

    Article  ADS  Google Scholar 

  81. T. Kobayashi et al., Phys. Rev. Lett. 60, 2599 (1988)

    Article  ADS  Google Scholar 

  82. N. Orr et al., Phys. Rev. Lett. 69, 2050 (1992)

    Article  ADS  Google Scholar 

  83. C.A. Bertulani, P.G. Hansen, Phys. Rev. C 70, 034609 (2004)

    Article  ADS  Google Scholar 

  84. Aumann et al., Phys. Rev. Lett. 84, 35 (2000)

    Google Scholar 

  85. A. Navin et al., Phys. Rev. Lett. 85, 266 (2000)

    Article  ADS  Google Scholar 

  86. E. Sauvan et al., Phys. Lett. B 491, 1 (2000)

    Article  ADS  Google Scholar 

  87. H. Simon et al., Phys. Rev. Lett. 83, 496 (1999)

    Article  ADS  Google Scholar 

  88. K. Hencken, G. Bertsch, H. Esbensen, Phys. Rev. C 54, 3043 (1996)

    Article  ADS  Google Scholar 

  89. J.A. Tostevin, J.S. Al Khalili, Phys. Rev. C 59, R5(R) (1999)

    Google Scholar 

  90. A. Bonaccorso, D.M. Brink, Phys. Rev. C 44, 1559 (1991)

    Article  ADS  Google Scholar 

  91. A. Bonaccorso, G.F. Bertsch, Phys. Rev. C 63, 044604 (2001)

    Article  ADS  Google Scholar 

  92. J.A. Tostevin, J. Phys. G. Nucl. part. Phys. 25, 735 (1999)

    Article  ADS  Google Scholar 

  93. F. Barranco, E. Vigezzi, in International School of Heavy-Ion Physics, 4th course, ed. by R.A. Broglia, P.G. Hansen (World Scientific, Singapore, 1998)

    Google Scholar 

  94. K. Yoneda et al., Phys. Rev. C 74, 021303(R) (2006)

    Article  ADS  Google Scholar 

  95. E.C. Simpson et al., Phys. Rev. Lett. 102, 132505 (2009)

    Article  ADS  Google Scholar 

  96. L. Gaudefroy et al., Phys. Rev. Lett. 97, 092501 (2006)

    Article  ADS  Google Scholar 

  97. T. Glasmacher et al., Phys. Lett. B 395, 163 (1997)

    Article  ADS  Google Scholar 

  98. S. Grévy et al., Eur. Phys. J. A 25, s1.111 (2005)

    Article  Google Scholar 

  99. B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007)

    Article  ADS  Google Scholar 

  100. S. Takeuchi et al., Phys. Rev. Lett. 109, 182501 (2012)

    Article  ADS  Google Scholar 

  101. S. Takeuchi et al., Nucl. Instrum. Methods A 763, 596 (2014)

    Article  ADS  Google Scholar 

  102. B.H. Wildenthal, W. Chung, Phys. Rev. C 22, 2260 (1980)

    Article  ADS  Google Scholar 

  103. A. Poves, J. Retamosa, Phys. Lett. B 184, 311 (1987)

    Article  ADS  Google Scholar 

  104. E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990)

    Article  ADS  Google Scholar 

  105. P. Doornenbal et al., Phys. Rev. Lett. 111, 212502 (2013)

    Article  ADS  Google Scholar 

  106. A. Burger et al., Phys. Lett. B 622, 29 (2005)

    Article  ADS  Google Scholar 

  107. R.V.F. Janssens et al., Phys. Lett. B 546, 55–62 (2002)

    Article  ADS  Google Scholar 

  108. D.-C. Dinca et al., Phys. Rev. C 71, 041302(R) (2005)

    Article  ADS  Google Scholar 

  109. A. Gade et al., Phys. Rev. C 74, 021302(R) (2006)

    Article  ADS  Google Scholar 

  110. F. Wienholtz et al., Nature 498, 346–349 (2013)

    Article  ADS  Google Scholar 

  111. M. Rosenbusch et al., Phys. Rev. Lett. 114, 202501 (2015)

    Article  ADS  Google Scholar 

  112. D. Steppenbeck et al., Nature 502, 207 (2013)

    Article  ADS  Google Scholar 

  113. G. Hagen et al., Phys. Rev. Lett. 109, 032502 (2012)

    Article  ADS  Google Scholar 

  114. J.D. Holt, T. Otsuka, A. Schwenk, T. Suzuki, J. Phys. G 39, 085111 (2012)

    Article  ADS  Google Scholar 

  115. V. Soma, C. Barbieri, T. Duguet, Phys. Rev. C 87, 011303 (2013)

    Article  ADS  Google Scholar 

  116. H. Hergert et al., Phys. Rev. Lett. 110, 242501 (2013)

    Article  ADS  Google Scholar 

  117. P. Doornenbal, A. Obertelli, Nucl. Phys. News 24, 36 (2014)

    Article  Google Scholar 

  118. A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014)

    Article  Google Scholar 

  119. A. Obertelli, T. Uesaka, Nucl. Phys. News 25, 17 (2015)

    Article  Google Scholar 

  120. H. Liu et al. (2018), arXiv:1811.08451

  121. C. Santamaria et al., Phys. Rev. Lett. 115, 192501 (2015)

    Article  ADS  Google Scholar 

  122. C.M. Shand et al., Phys. Lett. B 773, 492–497 (2017)

    Article  ADS  Google Scholar 

  123. S. Chen et al., Phys. Rev. C 95, 041302 (2017)

    Article  ADS  Google Scholar 

  124. F. Flavigny et al., Phys. Rev. Lett. 118, 242501 (2017)

    Article  ADS  Google Scholar 

  125. N. Paul et al., Phys. Rev. Lett. 118, 032501 (2017)

    Article  ADS  Google Scholar 

  126. A. Gade et al., Phys. Rev. C 77, 044306 (2008)

    Article  ADS  Google Scholar 

  127. J. Lee et al., Phys. Rev. Lett. 104, 112701 (2010)

    Article  ADS  Google Scholar 

  128. M.B. Tsang et al., Phys. Rev. Lett. 102, 062501 (2009)

    Article  ADS  Google Scholar 

  129. F. Flavigny et al., Phys. Rev. Lett. 108, 252501 (2012)

    Article  ADS  Google Scholar 

  130. C. Louchart et al., Phys. Rev. C 83, 011601 (2011)

    Article  ADS  Google Scholar 

  131. F. Flavigny et al., Phys. Rev. Lett. 110, 122503 (2013)

    Article  ADS  Google Scholar 

  132. D.F. Jackson, Nuclear Reactions (Methuen, London, 1970)

    Google Scholar 

  133. N.K. Glendenning, Direct Nuclear Reactions (World Scientific, Singapore, 2004)

    Google Scholar 

  134. C.A. Bertulani, P. Danielewicz, Introduction to Nuclear Reactions. Institute of Physics (2004)

    Google Scholar 

  135. I.J. Thompson, F. Nunes, Nuclear Reactions for Astrophysics (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  136. A. Obertelli, Eur. Phys. J. Plus 131, 319 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The present lecture notes are based on a lecture given at La Rábida summer school in Huelva, Spain. The material of the notes is partly taken from published lecture notes [136] by the author from a lecture given at the 2015 Pisa Summer school entitled “Re-writing nuclear physics textbooks: 30 years of radioactive ion beam physics”, organized by Angela Bonaccorso. I thank José-Enrique Ramos and Antonio Moro for their kind invitation and the perfect organisation of the La Rábida summer school in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Obertelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Obertelli, A. (2019). Nuclear Reaction Experiments. In: García-Ramos, JE., Andrés, M., Valera, J., Moro, A., Pérez-Bernal, F. (eds) Basic Concepts in Nuclear Physics: Theory, Experiments and Applications. RÁBIDA 2018. Springer Proceedings in Physics, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-030-22204-8_3

Download citation

Publish with us

Policies and ethics