Skip to main content

New Horizons for Laser Ablation: Nanomedicine, Thermometry, and Hyperthermal Treatment Planning Tools

  • Chapter
  • First Online:
Image-guided Laser Ablation

Abstract

Among the different thermal therapies known in the clinical practice, the technique based on laser light appears to be fast and relatively tissue insensitive. Improvement of the procedure for inducing thermal damage only within the tumor volume and safety margins, while spearing the surrounding healthy tissue and structures, is still a priority for research groups and companies working in this field.

The achievement of a safe and effective procedure could be enhanced by means of some technical solutions, like the improvement of the selective absorption of the laser light by the tumor tissue, the accurate and real-time monitoring of the ablation effects, and the immediate evaluation of the outcome to visualize viability gaps at clinically relevant locations. Numerous in vitro and in vivo studies on different tissues are now demonstrating the important and sophisticated role played by nanoparticles: they favor the absorption of laser light into the target, thus inducing a significant increase in temperature in the target area compared to the surrounding tissues. We are very likely to be on the eve of a possible revolution in the ablation techniques thanks to a targeted, controlled, and customized approach of the killer temperatures of the tumor cells in the absence of damage to the adjacent healthy structures.

As largely mentioned in this book, diagnostic images are useful for therapy guidance; during the last decades, the key role of imaging also for real-time feedback of the therapy effects has emerged. The standard thermometric technique used in clinical practice relies on MRI, while a deep study on the use of computed tomography, ultrasound images, and novel approaches is under development. Beyond the images, sensors play also a relevant role in this field. Fiber optic-based temperature sensors are small, biocompatible, do not interfere with the laser radiation and provide accurate measurement of the tissue temperature evolution during the procedure. Another relevant role is played by the hyperthermal treatment planning tools, which can calculate the optimal therapy settings based on the images of the patient and mathematical models.

This chapter aims at providing an overview on the novel approaches extensively employed in the research world, and which could foster the use of laser ablation technology in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed M, Brace CL, Lee FT Jr, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351–69.

    Article  PubMed  Google Scholar 

  2. Heisterkamp J, van Hillegersberg R, Mulder PG, Sinofsky EL, JN IJ. Importance of eliminating portal flow to produce large intrahepatic lesions with interstitial laser coagulation. Br J Surg. 1997;84(9):1245–8.

    Article  CAS  PubMed  Google Scholar 

  3. Vogl TJ, Kreutztrager M, Gruber-Rouh T, Eichler K, Nour-Eldin NE, Zangos S, et al. Neoadjuvant TACE before laser induced thermotherapy (LITT) in the treatment of non-colorectal non-breast cancer liver metastases: feasibility and survival rates. Eur J Radiol. 2014;83(10):1804–10.

    Article  PubMed  Google Scholar 

  4. Fiedler VU, Schwarzmaier HJ, Eickmeyer F, Muller FP, Schoepp C, Verreet PR. Laser-induced interstitial thermotherapy of liver metastases in an interventional 0.5 Tesla MRI system: technique and first clinical experiences. J Magn Reson Imaging. 2001;13(5):729–37.

    Article  CAS  PubMed  Google Scholar 

  5. Sequeiros RB, Hyvonen P, Sequeiros AB, Jyrkinen L, Ojala R, Klemola R, et al. MR imaging-guided laser ablation of osteoid osteomas with use of optical instrument guidance at 0.23 T. Eur Radiol. 2003;13(10):2309–14.

    Article  PubMed  Google Scholar 

  6. Lindner U, Lawrentschuk N, Trachtenberg J. Focal laser ablation for localized prostate cancer. J Endourol. 2010;24(5):791–7.

    Article  PubMed  Google Scholar 

  7. Raz O, Haider MA, Davidson SR, Lindner U, Hlasny E, Weersink R, et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol. 2010;58(1):173–7.

    Article  PubMed  Google Scholar 

  8. Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38(1):79–100.

    Article  PubMed  Google Scholar 

  9. Stafford RJ, Shetty A, Elliott AM, Klumpp SA, McNichols RJ, Gowda A, et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol. 2010;184(4):1514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma M, Balasubramanian S, Silva D, Barnett GH, Mohammadi AM. Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: An overview. Expert Rev Neurother. 2016;16(2):223–32.

    Article  CAS  PubMed  Google Scholar 

  11. Natarajan S, Raman S, Priester AM, Garritano J, Margolis DJ, Lieu P, et al. Focal Laser Ablation of Prostate Cancer: Phase I Clinical Trial. J Urol. 2016;196(1):68–75.

    Article  PubMed  Google Scholar 

  12. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–9.

    Article  CAS  PubMed  Google Scholar 

  13. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.

    Article  CAS  PubMed  Google Scholar 

  14. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23(3):217–28.

    Article  PubMed  Google Scholar 

  15. Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov NG, Khlebtsov BN, Akchurin GG, et al. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt. 2009;14(2):021016.

    Article  PubMed  Google Scholar 

  16. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A. 2003;100(23):13549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee J, Chatterjee DK, Lee MH, Krishnan S. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett. 2014;347(1):46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mooney R, Roma L, Zhao D, Van Haute D, Garcia E, Kim SU, et al. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano. 2014;8(12):12450–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mooney R, Schena E, Saccomandi P, Zhumkhawala A, Aboody K, Berlin JM. Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings. Int J Hyperth. 2017;33(2)

    Article  PubMed  Google Scholar 

  20. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–34.

    Article  CAS  PubMed  Google Scholar 

  21. Mocan L, Tabaran FA, Mocan T, Bele C, Orza AI, Lucan C, et al. Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes. Int J Nanomedicine. 2011;6:915–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo Y, Zhang Z, Kim DH, Li W, Nicolai J, Procissi D, et al. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. Int J Nanomedicine. 2013;8:3437–46.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen F, Cai W. Nanomedicine for targeted photothermal cancer therapy: where are we now? Nanomedicine (Lond). 2015;10(1):1–3.

    Article  Google Scholar 

  24. Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth. 2009;25(1):3–20.

    Article  CAS  Google Scholar 

  25. Christensen DA. Thermal dosimetry and temperature measurements. Cancer Res. 1979;39(6 Pt 2):2325–7.

    CAS  PubMed  Google Scholar 

  26. Cetas TC, Connor WG. Thermometry considerations in localized hyperthermia. Med Phys. 1978;5(2):79–91.

    Article  CAS  PubMed  Google Scholar 

  27. Cetas TC, Connor WG, Manning MR. Monitoring of tissue temperature during hyperthermia therapy. Ann N Y Acad Sci. 1980;335:281–97.

    Article  CAS  PubMed  Google Scholar 

  28. Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Todd N, Diakite M, Payne A, Parker DL. In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments. Magn Reson Med. 2014;72(3):793–9.

    Article  PubMed  Google Scholar 

  30. Vogl TJ, Straub R, Zangos S, Mack MG, Eichler K. MR-guided laser-induced thermotherapy (LITT) of liver tumours: experimental and clinical data. Int J Hyperth. 2004;20(7):713–24.

    Article  Google Scholar 

  31. Saccomandi P, Schena E, Silvestri S. Techniques for temperature monitoring during laser-induced thermotherapy: an overview. Int J Hyperth. 2013;29(7):609–19.

    Article  Google Scholar 

  32. de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CT. MR thermometry for monitoring tumor ablation. Eur Radiol. 2007;17(9):2401–10.

    Article  PubMed  Google Scholar 

  33. Allegretti G, Saccomandi P, Giurazza F, Caponero MA, Frauenfelder G, Di Matteo FM, et al. Magnetic resonance-based thermometry during laser ablation on ex-vivo swine pancreas and liver. Med Eng Phys. 2015;37(7):631–41.

    Article  CAS  PubMed  Google Scholar 

  34. Munier SM, Hargreaves EL, Patel NV, Danish SF. Effects of variable power on tissue ablation dynamics during magnetic resonance-guided laser-induced thermal therapy with the Visualase system. Int J Hyperth. 2018;34(6):764–72.

    Article  CAS  Google Scholar 

  35. Fani F, Schena E, Saccomandi P, Silvestri S. CT-based thermometry: an overview. Int J Hyperth. 2014;30(4):219–27.

    Article  CAS  Google Scholar 

  36. Schena E, Saccomandi P, Giurazza F, Caponero MA, Mortato L, Di Matteo FM, et al. Experimental assessment of CT-based thermometry during laser ablation of porcine pancreas. Phys Med Biol. 2013;58(16):5705–16.

    Article  CAS  PubMed  Google Scholar 

  37. Pandeya GD, Klaessens JH, Greuter MJ, Schmidt B, Flohr T, van Hillegersberg R, et al. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver. Eur Radiol. 2011;21(8):1733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pandeya GD, Greuter MJ, de Jong KP, Schmidt B, Flohr T, Oudkerk M. Feasibility of noninvasive temperature assessment during radiofrequency liver ablation on computed tomography. J Comput Assist Tomogr. 2011;35(3):356–60.

    Article  PubMed  Google Scholar 

  39. Liguori C, Frauenfelder G, Massaroni C, Saccomandi P, Giurazza F, Pitocco F, et al. Emerging clinical applications of computed tomography. Med Devices. 2015;8:265–78.

    Google Scholar 

  40. Homolka P, Gahleitner A, Nowotny R. Temperature dependence of HU values for various water equivalent phantom materials. Phys Med Biol. 2002;47(16):2917–23.

    Article  CAS  PubMed  Google Scholar 

  41. Bruners P, Levit E, Penzkofer T, Isfort P, Ocklenburg C, Schmidt B, et al. Multi-slice computed tomography: A tool for non-invasive temperature measurement? Int J Hyperth. 2010;26(4):359–65.

    Article  Google Scholar 

  42. Schena E, Saccomandi P, Fong Y. Laser Ablation for Cancer: Past, Present and Future. J Funct Biomater. 2017;8(2)

    Article  PubMed Central  Google Scholar 

  43. Schena E, Giurazza F, Massaroni C, Fong Y, Park JJ, and Saccomandi P, Thermometry based on computed tomography images during microwave ablation: Trials on ex vivo porcine liver. In: 12MTC 2017 IEEE International Instrumentation and Measurement Technology Conference, Proceedings; 2017.

    Google Scholar 

  44. Bowen T, Connor WG, Nasoni RL, Pifer AE, Sholes RR. In: Linzer M, editor. Measurement of the temperature dependence of the velocity of ultrasound in soft tissue: Ultrasonic Tissue Characterization II National Bureau of Standards; 1979. p. 57–61.

    Google Scholar 

  45. Martin AR. Temperature dependence of ultrasonic backscattered energy in motion compensated images. IEEE Trans Ultrason Ferr. 2005;52:1644–52.

    Article  Google Scholar 

  46. Saccomandi P, Schena E, Diana M, Marescaux J, Costamagna G. Thermal treatments of tumors: principles and methods. In: Sons JW, editor. Biomedical engineering challenges: a chemical engineering insight; 2018. p. 199–228.

    Chapter  Google Scholar 

  47. Zhou Z, Wu W, Sea W. A survey of ultrasound elastography approaches to percutaneous ablation monitoring. Proceedings of the Institution of Mechanical Engineers, Part H. J Eng Med. 2014;22810:1069–82.

    Article  Google Scholar 

  48. Schena E, Majocchi L. Assessment of temperature measurement error and its correction during Nd:YAG laser ablation in porcine pancreas. Int J Hyperth. 2014;30(5):328–34.

    Article  Google Scholar 

  49. Schena E, Tosi D, Saccomandi P, Lewis E, Kim T. Fiber optic sensors for temperature monitoring during thermal treatments: an overview. Sensors. 2016;(7):16.

    Google Scholar 

  50. Saccomandi P, Schena E, Di Matteo FM, Pandolfi M, Martino M, Rea R, et al.. Theoretical assessment of principal factors influencing laser interstitial thermotherapy outcomes on pancreas. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2012.

    Google Scholar 

  51. Cavaiola C, Saccomandi P, Massaroni C, Tosi D, Schena E. Error of a Temperature Probe for Cancer Ablation Monitoring Caused by Respiratory Movements: Ex Vivo and In Vivo Analysis. IEEE Sensors J. 2016;16(15):5934–41.

    Article  Google Scholar 

  52. Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RA, et al. Simulation techniques in hyperthermia treatment planning. Int J Hyperth. 2013;29(4):346–57.

    Article  Google Scholar 

  53. Bruggmoser G. Some aspects of quality management in deep regional hyperthermia. Int J Hyperth. 2012;28(6):562–9.

    Article  Google Scholar 

  54. Rijnen Z, Bakker JF, Canters RA, Togni P, Verduijn GM, Levendag PC, et al. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int J Hyperth. 2013;29(3):181–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Saccomandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saccomandi, P., Schena, E., Pacella, C.M. (2020). New Horizons for Laser Ablation: Nanomedicine, Thermometry, and Hyperthermal Treatment Planning Tools. In: Pacella, C., Jiang, T., Mauri, G. (eds) Image-guided Laser Ablation. Springer, Cham. https://doi.org/10.1007/978-3-030-21748-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21748-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21747-1

  • Online ISBN: 978-3-030-21748-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics