Skip to main content

Lung Tumors Laser Ablation

  • Chapter
  • First Online:
Image-guided Laser Ablation

Abstract

Image-guided laser ablation has proven to be effective and promising for lung tumors. This minimally invasive technique is able to produce local high thermal energy through a fine needle, which can cause local tissue coagulative necrosis. As a method of local tumor control therapy, the control rate for lesions less than 3 cm is satisfactory. It can also assist other methods including radiotherapy, chemotherapy and targeted therapy, especially for elderly lung cancer patients who cannot tolerate surgery. Laser ablation is a relatively safe and effective option for local tumor control, especially for tumors adjacent to critical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Trans Lung Cancer Res. 2018;7(3):220–33.

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  Google Scholar 

  3. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605–44.

    Article  Google Scholar 

  4. Vansteenkiste J, Crino L, Dooms C, Douillard JY, Faivre-Finn C, Lim E, et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol. 2014;25(8):1462–74.

    Article  CAS  Google Scholar 

  5. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(1):39–51.

    Article  Google Scholar 

  6. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070–6.

    Article  CAS  Google Scholar 

  7. Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, Henderson MA, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75(3):677–82.

    Article  Google Scholar 

  8. Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26(21):3552–9.

    Article  Google Scholar 

  9. NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer:a systematic review and meta-analysis of individualparticipant data. Lancet. 2014;383:1561–71.

    Article  Google Scholar 

  10. Curran WJ Jr, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S, et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011;103(19):1452–60.

    Article  CAS  Google Scholar 

  11. Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(13):2181–90.

    Article  CAS  Google Scholar 

  12. Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24(28):4539–44.

    Article  Google Scholar 

  13. Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: Biology and treatment options. Biochim Biophys Acta. 2015;1856(2):189–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sponza M, Aprile G, Gasparini D, Iaiza E, De Pauli F, Giovannoni M, et al. Percutaneous laser-induced thermoablation (LIT) of non-resectable lung metastases and primary lung tumors: A preliminary evaluation of technical aspects and local efficiency. ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol. 2006;24:18S.

    Article  Google Scholar 

  15. Regine R, Stavolo C, Maglione F. Laser thermoablation of smal pulmonary tumors : immediate and long-term follow-up CT features. In: C 23; First World Congress of ThoracicImaging and Diagnosis in Chest Disease. NaplesItaly: Pozzuoli; 2005.

    Google Scholar 

  16. Weigel C, Rosenberg C, Langner S, Frohlich CP, Hosten N. Laser ablation of lung metastases: results according to diameter and location. Eur Radiol. 2006;16(8):1769–78.

    Article  Google Scholar 

  17. Rosenberg C, Puls R, Hegenscheid K, Kuehn J, Bollman T, Westerholt A, et al. Laser ablation of metastatic lesions of the lung: long-term outcome. AJR Am J Roentgenol. 2009;192(3):785–92.

    Article  Google Scholar 

  18. Zhao Q, Tian G, Chen F, Zhong L, Jiang T. CT-guided percutaneous laser ablation of metastatic lung cancer: three cases report and literature review. Oncotarget. 2017;8(2):2187–96.

    Article  Google Scholar 

  19. Vogl TJ, Fieguth HG, Eichler K, Straub R, Lehnert T, Zangos S, et al. Laser-induced thermotherapy of lung metastases and primary lung tumors. Radiologe. 2004;44(7):693–9.

    Article  CAS  Google Scholar 

  20. Liu B, Ye X, Fan W, Li X, Feng W, Lu Q, et al. Expert Consensus for Image-guided Radiofrequency Ablation of Pulmonary Tumors (2018 Version). Zhongguo Fei Ai Za Zhi. 2018;21(2):76–88.

    PubMed  Google Scholar 

  21. Vogl TJ, Naguib NN, Lehnert T, Nour-Eldin NE. Radiofrequency, microwave and laser ablation of pulmonary neoplasms: clinical studies and technical considerations--review article. Eur J Radiol. 2011;77(2):346–57.

    Article  Google Scholar 

  22. Inoue M, Kotake Y, Nakagawa K, Fujiwara K, Fukuhara K, Yasumitsu T. Surgery for pulmonary metastases from colorectal carcinoma. Ann Thorac Surg. 2000;70(2):380–3.

    Article  CAS  Google Scholar 

  23. RobinsonLA, RuckdeschelJC, WagnerH, Jr., StevensCW, American College of Chest P. Treatment of non-small cell lung cancer-stage IIIA: ACCP evidence-based clinical practice guidelines (2nd edition). Chest2007;132(3 Suppl):243S–265S.

    Google Scholar 

  24. Mazzone P. Preoperative evaluation of the lung resection candidate. Cleve Clin J Med. 2012;79(Electronic Suppl 1):eS17–22.

    PubMed  Google Scholar 

  25. Hiraki T, Gobara H, Iguchi T, Fujiwara H, Matsui Y, Kanazawa S. Radiofrequency ablation as treatment for pulmonary metastasis of colorectal cancer. World J Gastroenterol. 2014;20(4):988–96.

    Article  Google Scholar 

  26. Hosten N, Stier A, Weigel C, Kirsch M, Puls R, Nerger U, et al. Laser-induced thermotherapy (LITT) of lung metastases: description of a miniaturized applicator, optimization, and initial treatment of patients. Rofo. 2003;175(3):393–400.

    Article  CAS  Google Scholar 

  27. Roggan A, Mesecke-von Rheinbaben I, Knappe V, Vogl T, Mack MG, Germer C, et al. Applicator development and irradiation planning in laser-induced thermotherapy (LITT). Biomed Tech (Berl). 1997;42(Suppl):332–3.

    Article  Google Scholar 

  28. Vogl TJ, Eckert R, Naguib NN, Beeres M, Gruber-Rouh T, Nour-Eldin NA. Thermal Ablation of Colorectal Lung Metastases: Retrospective Comparison Among Laser-Induced Thermotherapy, Radiofrequency Ablation, and Microwave Ablation. AJR Am J Roentgenol. 2016;207(6):1340–9.

    Article  Google Scholar 

  29. Kim HJ, Kye BH, Lee JI, Lee SC, Lee YS, Lee IK, et al. Surgical resection for lung metastases from colorectal cancer. J Kor Soc Coloproctol. 2010;26:354–8.

    Article  Google Scholar 

  30. Pfannschmidt J, Muley T, Hoffmann H, Dienemann H. Prognostic factors and survival after complete resection of pulmonary metastases from colorectal carcinoma: experiences in 167 patients. J Thorac Cardiovasc Surg. 2003;126(3):732–9.

    Article  Google Scholar 

  31. Yamakado K, Hase S, Matsuoka T, Tanigawa N, Nakatsuka A, Takaki H, et al. Radiofrequency ablation for the treatment of unresectable lung metastases in patients with colorectal cancer: a multicenter study in Japan. J Vasc Interv Radiol. 2007;18(3):393–8.

    Article  Google Scholar 

  32. Knappe V, Mols A. Laser therapy of the lung: biophysical background. Radiologe. 2004;44(7):677–83.

    Article  CAS  Google Scholar 

  33. Haemmerich D, Lee FT Jr. Multiple applicator approaches for radiofrequency and microwave ablation. Int J Hyperth. 2005;21(2):93–106.

    Article  CAS  Google Scholar 

  34. Francica G, Petrolati A, Di Stasio E, Pacella S, Stasi R, Pacella CM. Effectiveness, safety, and local progression after percutaneous laser ablation for hepatocellular carcinoma nodules up to 4 cm are not affected by tumor location. AJR Am J Roentgenol. 2012;199(6):1393–401.

    Article  Google Scholar 

  35. Di Matteo F, Picconi F, Martino M, Pandolfi M, Pacella CM, Schena E, et al. Endoscopic ultrasound-guided Nd:YAG laser ablation of recurrent pancreatic neuroendocrine tumor: a promising revolution? Endoscopy. 2014;46(Suppl 1 UCTN):E380–1.

    Google Scholar 

  36. Di Matteo FM, Saccomandi P, Martino M, Pandolfi M, Pizzicannella M, Balassone V, et al. Feasibility of EUS-guided Nd:YAG laser ablation of unresectable pancreatic adenocarcinoma. Gastrointest Endosc. 2018;88(1):168–74 e1.

    Article  Google Scholar 

  37. Pereira PL, Masala S. Cardiovascular, Interventional Radiological Society of E. Standards of practice: guidelines for thermal ablation of primary and secondary lung tumors. Cardiovasc Intervent Radiol. 2012;35(2):247–54.

    Article  Google Scholar 

  38. Ye X, Fan WJ, Chen JH, Feng WJ, Gu S, Han Y, et al. Chinese expert consensus workshop report: Guidelines for thermal ablation of primary and metastatic lung tumors. Thoracic Cancer. 2015;6:112–21.

    Article  Google Scholar 

  39. Dong S, Kong J, Kong F, Kong J, Gao J, Ke S, et al. Insufficient radiofrequency ablation promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through Akt and ERK signaling pathways. J Transl Med. 2013;11:273.

    Article  Google Scholar 

  40. Brunello F, Carucci P, Gaia S, Rolle E, Brunocilla PR, Castiglione A, et al. Local tumor progression of hepatocellular carcinoma after microwave percutaneous ablation: a preliminary report. Gastroenterology Res. 2012;5(1):28–32.

    PubMed  PubMed Central  Google Scholar 

  41. Ohno T, Kawano K, Yokoyama H, Tahara K, Sasaki A, Aramaki M, et al. Microwave coagulation therapy accelerates growth of cancer in rat liver. J Hepatol. 2002;36(6):774–9.

    Article  Google Scholar 

  42. Dupuy DE, Mayo-Smith WW, Abbott GF, DiPetrillo T. Clinical applications of radio-frequency tumor ablation in the thorax. Radiographics. 2002;22 Spec No:S259–69.

    Article  Google Scholar 

  43. McTaggart RA, Dupuy DE, Dipetrillo T. Image guided ablation in the thorax. In: Geschwind J-FH SM, editor. Interventional oncology: principles and practice. New York, NY: Cambridge University Press; 2008. p. 440–74.

    Chapter  Google Scholar 

  44. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  45. Ridge CA, Silk M, Petre EN, Erinjeri JP, Alago W, Downey RJ, et al. Radiofrequency ablation of T1 lung carcinoma: comparison of outcomes for first primary, metachronous, and synchronous lung tumors. J Vasc Interv Radiol. 2014;25(7):989–96.

    Article  Google Scholar 

  46. Dempsey PJ, Ridge CA, Solomon SB. Advances in interventional oncology: lung cancer. Cancer J. 2016;22(6):393–400.

    Article  Google Scholar 

  47. Vogl TJ, Helmberger TK, Mack MG, Reiser MFE. Percutaneous tumor ablation in medical radiology. Berlin: Springer-Verlag; 2008.

    Book  Google Scholar 

  48. Donington J, Ferguson M, Mazzone P, Handy J Jr, Schuchert M, Fernando H, et al. American College of Chest Physicians and Society of Thoracic Surgeons consensus statement for evaluation and management for high-risk patients with stage I non-small cell lung cancer. Chest. 2012;142(6):1620–35.

    Article  Google Scholar 

  49. de Baere T, Auperin A, Deschamps F, Chevallier P, Gaubert Y, Boige V, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol. 2015;26(5):987–91.

    Article  Google Scholar 

  50. Vogl TJ, Straub R, Eichler K, Sollner O, Mack MG. Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy--local tumor control rate and survival data. Radiology. 2004;230(2):450–8.

    Article  Google Scholar 

  51. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD 3rd, Dupuy DE, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol. 2005;16(6):765–78.

    Article  Google Scholar 

  52. Dupuy DE. Image-guided thermal ablation of lung malignancies. Radiology. 2011;260(3):633–55.

    Article  Google Scholar 

  53. Okuma T, Matsuoka T, Tutumi S, Nakmura K, Inoue Y. Air embolism during needle placement for CT-guided radiofrequency ablation of an unresectable metastatic lung lesion. J Vasc Interv Radiol. 2007;18(12):1592–4.

    Article  Google Scholar 

  54. Bolliger CT. Multimodality treatment of advanced pulmonary malignancies. In: Interventional bronchoscopy, vol. 30. Basel: Karger Publishers; 2000. p. 187–96.

    Chapter  Google Scholar 

  55. Vietze A, Koch F, Laskowski U, Linder A, Hosten N. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors. Eur J Radiol. 2011;80(2):569–72.

    Article  Google Scholar 

  56. Hoffmann CO, Rosenberg C, Linder A, Hosten N. Residual tumor after laser ablation of human non-small-cell lung cancer demonstrated by ex vivo staining: correlation with invasive temperature measurements. MAGMA. 2012;25(1):63–74.

    Article  CAS  Google Scholar 

  57. Koch F, Vietze A, Laskowski U, Ritter C, Linder A, Hosten N. Ex-vivo human lung tumor model: use for temperature measurements during thermal ablation of NSCLC. In: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, vol. 183, No. 03. New York: Georg Thieme; 2011. p. 251–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian’an Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, T., Zhao, Q. (2020). Lung Tumors Laser Ablation. In: Pacella, C., Jiang, T., Mauri, G. (eds) Image-guided Laser Ablation. Springer, Cham. https://doi.org/10.1007/978-3-030-21748-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21748-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21747-1

  • Online ISBN: 978-3-030-21748-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics