Skip to main content

Structured Illumination Microscopy

  • Chapter
  • First Online:
Superresolution Optical Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 227))

Abstract

Structured illumination microscopy /microscope (SIM) is an optical technique that has the capability of enhancing the lateral and axial resolution of a fluorescence widefield microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey, B., Farkas, D. L., Taylor, D. L., and Lanni, F. (1993). Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature, 366, 44–48.

    Google Scholar 

  • Bailey, B., Krishnamurthi, V., Farkas, D. L., Taylor, D. L., and Lanni, F. (1994). Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy. Proceedings of SPIE, 2184, 208–213.

    Google Scholar 

  • Best, G., Amberger, R., Baddeley, D., Ach, T., Dithmar, S., Heintzmann, R., and Cremer, C. (2011). Structured illumination microscopy of autofluorescent aggregations in human tissue. Micron, 42, 330–335.

    Google Scholar 

  • Boyd, R. W. (2008). Nonlinear Optics, Third Edition. San Diego: Academic Press.

    Google Scholar 

  • Bracewell, R. (1999). The Fourier Transform and Its Applications, Third Edition, New York: McGraw-Hill.

    Google Scholar 

  • Carlson, A. B. (1986). Communications Systems. New York, McGraw-Hill.

    Google Scholar 

  • Cragg, G. E., and So, P. T. C. (2000). Lateral resolution enhancement with standing evanescent waves. Optics Letters, 25, 46–48.

    Google Scholar 

  • Creath, K., Schmitt, J., and Wyant, J. C. (2007). Optical Metrology of Diffuse Surfaces, in: Optical Shop Testing, Third Edition, Daniel Malacara, Editor. Hoboken: John Wiley & Sons, pp. 756-807.

    Google Scholar 

  • Frohn, J. T., Knapp, H. F., and Stemmer, A. (2000). True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proceedings of the National Academy of Sciences USA, 97, 7232–7236.

    Google Scholar 

  • Frohn, J. T., Knapp, H. F., and Stemmer, A. (2001). Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation. Optics Letters, 26, 828–830.

    Google Scholar 

  • Gaskill, J. D. (1978). Linear systems, Fourier Transforms, and Optics. New York: John Wiley and Sons.

    Google Scholar 

  • Goodman, J. W. (2005). Introduction to Fourier Optics, Third Edition. Greenwood Village, Colorado: Roberts & Company.

    Google Scholar 

  • Goodman, J. W. (2017). Introduction to Fourier optics (4th ed.). New York: W. H. Freeman and Company.

    Google Scholar 

  • Grimm, M. A., and Lohmann, A. W. (1966). Super resolution image for one-dimensional objects. Journal of the Optical Society of America, 56, 1151–1156.

    Google Scholar 

  • Gustafsson, M. G. L., Sedat, J. W., and Agard, D. A. Method and apparatus for three-dimensional microscopy with enhanced depth resolution. US Patent RE38,307, E1. Filed 1995, reissued 11 November 2003.

    Google Scholar 

  • Gustafsson, M. G. L. (1999). Extended resolution fluorescence microscopy. Current Opinion in Structural Biology, 9, 627–634.

    Google Scholar 

  • Gustafsson, M. G. L. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82–87.

    Google Scholar 

  • Gustafsson, M. G. L., Agard, D. A., and Sedat, J. W. (1995). Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proceedings of SPIE, 2412, 147–156.

    Google Scholar 

  • Gustafsson, M. G. L., Agard, D. A., and Sedat, J. W. (1999). I5M: 3D widefield light microscopy with better than 100 nm axial resolution. Journal of Microscopy, 195, 10–16.

    Google Scholar 

  • Gustafsson, M. G. L., Agard, D. A., and Sedat, J. W. (2000). Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proceedings of SPIE, 3919, 141–150.

    Google Scholar 

  • Gustafsson, M. G. L. (2005). Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences USA, 102, 13081–13086.

    Google Scholar 

  • Gustafsson, M. G. L. (2008). Super-resolution light microscopy goes live. Nature Methods, 5, 385–387.

    Google Scholar 

  • Gustafsson, M. G. L., Shao, L., Carlton, P. M., Wang, C. J., Golubovskaya, I. N., Cande, W. Z., Agard, D. A., and Sedat, J. W. (2008). Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophysical Journal, 94, 4957–4970.

    Google Scholar 

  • Hausmann, M., Schneider, B., Bradl, J., and Cremer, C. (1997). High-precision distance microscopy of 3D-nanostructures by a spatially modulated excitation fluorescence microscope. Proceedings of SPIE, 3197, 217–222.

    Google Scholar 

  • Heintzmann, R. (2003). Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron, 34, 283–291.

    Google Scholar 

  • Heintzmann, R., and Benedetti, P. A. (2006). High-resolution image reconstruction in fluorescence microscopy with patterned excitation. Applied Optics, 45, 5037–5045.

    Google Scholar 

  • Heintzmann, R., and Cremer, C. (1999). Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proceedings of SPIE, 3568, 185–196.

    Google Scholar 

  • Heintzmann, R., and Cremer, C. (2002). Axial tomographic confocal fluorescence microscopy. Journal of Microscopy, 206, 7–23.

    Google Scholar 

  • Heintzmann, R., Jovin, T. M., and Cremer, C. (2002). Saturated patterned excitation microscopy-a concept for optical resolution improvement. Journal of the Optical Society of America A, 19, 1599–1609.

    Google Scholar 

  • Hell, S., and Stelzer, E. H. K. (1992a). Properties of a 4Pi confocal fluorescence microscope. Journal of the Optical Society of America A, 9, 2159–2166.

    Google Scholar 

  • Hell, S., and Stelzer, E. H. K. (1992b). Fundamental improvement of a 4Pi confocal fluorescence microscope using two-photon excitation. Optics Communications, 93, 277–282.

    Google Scholar 

  • Hirvonen, L. (2008). Structured illumination microscopy using photoswitchable fluorescent proteins. PhD thesis, King’s College London, UK.

    Google Scholar 

  • Jost, A., Tolstik, E., Feldmann, P., Wicker, K., Sentenac, A., and Heintzmann, R. (2015). Optical sectioning and high resolution in single-slice structured illumination microscopy by thick slice blind-SIM reconstruction. PLoS ONE, 10(7), e0132174. https://doi.org/10.1371/journal.pone.0132174.

  • Kafri, O., and Glatt, I. (1990). The Physics of Moiré Metrology. New York: John Wiley & Sons.

    Google Scholar 

  • Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L., and Gustafsson, M. G. (2009). Super-resolution video microscopy of live cells by structured illumination. Nature Methods, 6, 339–342.

    Google Scholar 

  • Krzewina, L. G., and Kim, M. K. (2006). Single-exposure optical sectioning by color structured illumination microscopy. Optics Letters, 31, 477–479.

    Google Scholar 

  • Lanni, F., and Bailey, B. (1994). Standing-wave excitation for fluorescence microscopy. Trends in Cell Biology, 4, 262–265.

    Google Scholar 

  • Lanni, F., Bailey, B., Farkas, D. L., and Taylor, D. L. (1993). Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes. Bioimaging, 1, 187–196.

    Google Scholar 

  • Lanni, F., Taylor, D. L., and Waggoner, A. S. (1986). Standing wave luminescence microscopy. Patent, US 4621911 A, Nov 11, 1986.

    Google Scholar 

  • Lohmann, A. W. (1978). Three-dimensional properties of wave-fields. Optik, 51, 105–117.

    Google Scholar 

  • Lukosz, W. (1966). Optical systems with resolving powers exceeding the classical limit, Part 1. Journal of the Optical Society of America, 56, 1463–1471.

    Google Scholar 

  • Lukosz, W. (1967). Optical systems with resolving powers exceeding the classical limit. II. Journal of the Optical Society of America, 57, 932–941.

    Google Scholar 

  • Lukosz, W., and Marchand, M. (1963). Optischen Abbildung Unter Ãœberschreitung der Beugungsbedingten Auflösungsgrenze. Optica Acta, 10, 241–255.

    Google Scholar 

  • Masters, B. R. (1996). Selected Papers on Confocal Microscopy. Bellingham, SPIE Press.

    Google Scholar 

  • Neil, M. A. A., JuÅ¡kaitis, R., and Wilson, T. (1997). Method of obtaining optical sectioning by using structured light in a conventional microscopy. Optics Letters, 22, 1905–1907.

    Google Scholar 

  • Neil, M. A. A., JuÅ¡kaitis, R., and Wilson, T. (1998a). Real time 3D fluorescence microscopy by two beam interference illumination. Optics Communications, 153, 1–4.

    Google Scholar 

  • Neil, M. A. A., Wilson, T., and JuÅ¡kaitis, R. (1998b). A light efficient optically sectioning microscope. Journal of Microscopy, 189, 114–117.

    Google Scholar 

  • Oster, G., and Nishijima, Y. (1963). Moiré patterns. Scientific American, 208, 54–63.

    Google Scholar 

  • Rayleigh, L. (1881). On copying diffraction gratings and on some phenomenon connected therewith. Philosophical Magazine, 11, 196–205.

    Google Scholar 

  • Rego, E. H., Shao, L., Macklin, J. J., Winoto, L., Johansson, G. A., Kamps-Hughes, N., Davidson, M. W., and Gustafsson, M. G. L. (2012). Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proceedings of the National Academy of Sciences USA, 109, E135–E143.

    Google Scholar 

  • Rowe, S. H., and Welford, W. T. (1967). Surface topography of non-optical surfaces by projected interference fringes. Nature, 216, 786–787.

    Google Scholar 

  • Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M. C., Agard, D. A., Gustafsson, M. G. L., Leonhardt, H., and Sedat, J. W. (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320, 1332–1336.

    Google Scholar 

  • Schropp, M., and Uhl, R. (2014). Two-dimensional structured illumination microscopy. Journal of Microscopy, 256, 23–36.

    Google Scholar 

  • Shao, L., Isaac, B., Uzawa, S., Agard, D. A., Sedat, J. W., and Gustafsson, M. G. L. (2008). I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophysical Journal, 94, 4971–4983.

    Google Scholar 

  • Streibl, N. (1984). Fundamental restrictions for 3-D light distributions. Optik, 66, 341–354.

    Google Scholar 

  • Streibl, N. (1985). Three-dimensional imaging by a microscope. Journal of the Optical Society of America A, 2, 121–127.

    Google Scholar 

  • Talbot, H. F. (1836). Facts relating to optical science. Philosophical Magazine, 9, 401–407.

    Google Scholar 

  • Wicker, K., Mandula, O., Best, G., Fiolka, R., and Heintzmann, R. (2013). Phase optimization for structured illumination microscopy. Optics Express, 21, 2032–2049.

    Google Scholar 

  • Williams, C. S., and Becklund, O. A. (1989). Introduction to the Optical Transfer Function. New York: Wiley-Interscience.

    Google Scholar 

Further Reading

  • Alexandrov, S. A., Hillman, T. R., Gutzler, T., and Sampson, D. D. (2006). Synthetic aperture fourier holographic optical microscopy. Physical Review Letters, 97, 168102-1 to -4.

    Google Scholar 

  • Ball, G., Demmerle, J., Kaufmann, R., Davis, I., Dobbie, I. M., and Schermelleh, L. (2015). SIMcheck: A toolbox for successful super-resolution structured illumination microscopy. Scientific Reports, 5, 15915. https://doi.org/10.1038/srep15915.

  • Betzig, E. (2005). Excitation strategies for optical lattice microscopy. Optics Express, 13, 3021–3036.

    Google Scholar 

  • Bewersdorf, J., Schmidt, R., and Hell, S. W. (2006). Comparison of I5M and 4Pi-microscopy. Journal of Microscopy, 222, 105–117.

    Google Scholar 

  • Blanca, C. M., and Hell, S. W. (2002). Axial superresolution with ultrahigh aperture lenses. Optics Express, 10, 893–898.

    Google Scholar 

  • Buscher, D. F. (2015). Practical Optical Interferometry. Imaging at Visible and Infrared Wavelengths. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Chung, E., Kim, D., Cui, Y., Kim, Y-H., and So, P. T. C. (2007). Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens. Biophysical Journal, 93, 1747–1757.

    Google Scholar 

  • Cremer, C., and Masters, B. R. (2013). Resolution enhancement techniques in microscopy. The European Physical Journal H, 38, 281–344. (Open Access article).

    Google Scholar 

  • Débarre, D., Botcherby, E. J., Booth, M. J., and Wilson, T. (2008). Adaptive optics for structured illumination microscopy. Optics Express, 16, 9290–9305.

    Google Scholar 

  • Dubois, A., Vabre, L., Boccara, A.-C., and Beaurepaire, E. (2002). High-resolution full-field optical coherence tomography with a Linnik microscope. Applied Optics, 41, 805–812.

    Google Scholar 

  • Egner, A., and Hell, S. W. (2005). Fluorescence microscopy with super-resolved optical sections. Trends in Cell Biology, 15, 207–215.

    Google Scholar 

  • Fiolka, R., Shao, L., Rego, E. H., Davidson, M. W., and Gustafsson, M. G. L. (2012). Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proceedings of the National Academy of Sciences USA, 109, 5311–5315.

    Google Scholar 

  • Heintzmann, R., and Ficz, G. (2007). Breaking the resolution limit in light microscopy. Methods in Cell Biology, 81, 561–580.

    Google Scholar 

  • Jost, A., and Heintzmann, R. (2013). Superresolution multidimensional imaging with structured illumination microscopy. Annual Review of Materials Research, 43, 261–82.

    Google Scholar 

  • Kam, Z., Hanser, B., Gustafsson, M. G. L., Agard, D. A., and Sedat, J. W. (2001). Computational adaptive optics for live three-dimensional biological imaging. Proceedings of the National Academy of Sciences USA, 98, 3790–3795.

    Google Scholar 

  • Lim, D., Chu, K. K., and Mertz, J. (2008). Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Optics Letters, 33, 1819–1821.

    Google Scholar 

  • Lim, D., Ford, T. N., Chu, K. K., and Mertz, J. (2011). Optically sectioned in vivo imaging with speckle illumination HiLo microscopy. Journal of Biomedical Optics, 16, 016014-1 to 016014-8.

    Google Scholar 

  • Lukyanov, K. A., Fradkov, A. F., Gurskaya, N. G., Matz, M. V., Labas, Y. A., Savitsky, A. P., Markelov, M. L., Zaraisky, A. G., Zhao, X., Tan, W., and Lukyanov, S. A. (2000). Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. Journal of Biological Chemistry, 275, 25879–25882.

    Google Scholar 

  • Martínez-Corral, M., and Saavedra, G. (2009). The Resolution Challenge in 3D Optical Microscopy, in: Progress in Optics, Emil Wolf, Editor, 53, 1–67.

    Google Scholar 

  • Mertz, J. (2011). Optical sectioning microscopy with planar or structured illumination. Nature Methods, 8, 911–819.

    Google Scholar 

  • Neil, M. A. A., JuÅ¡kaitis, R., Wilson, T., Laczik, Z. J., and Sarafis, V. (2000a). Optimized pupil-plane filters for confocal microscope point-spread function engineering. Optics Letters, 25, 245–247.

    Google Scholar 

  • Neil, M. A. A., Squire, A., JuÅ¡kaitis, R., Bastiaens, P. I., and Wilson, T. (2000b). Wide-field optically sectioning fluorescence microscopy with laser illumination. Journal of Microscopy, 197, 1–4.

    Google Scholar 

  • Porter, A. B. (1906). On the diffraction theory of microscope vision. Philosophical Magazine, 6, 154–156.

    Google Scholar 

  • Rego, E. H., and Shao, L. (2015). Practical structured illumination microscopy. In: Advanced fluorescence Microscopy: Methods and Protocols in Molecular Biology. Peter J. Verveer (ed.), vol. 1251, 175–192.

    Google Scholar 

  • Reasenberg, R. D. (Ed.) (1998). Astronomical interferometry. Proceedings of SPIE, 3350, entire volume. Bellingham: SPIE.

    Google Scholar 

  • Schermelleh, L., Heintzmann, R., and Leonhardt, H. (2010). A guide to super-resolution fluorescence microscopy. The Journal of Cell Biology, 190, 165–175.

    Google Scholar 

  • Schwentker, A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C., and Hell, S. W. (2007). Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique, 70, 269–280.

    Google Scholar 

  • Shabtay, G., Mendlovic, D., Zalevsky, Z., and Lipson, L. (2001). The optimal system for sub-wavelength point source localization. Optics Communications, 198, 311–315.

    Google Scholar 

  • Shao, L., Kner, P., Rego, E. H., and Gustafsson, M. G. L. (2011). Super-resolution 3D microscopy of live whole cells using structured illumination. Nature Methods, 8, 1044–1046.

    Google Scholar 

  • Shao, L., Winoto, L., Agard, D. A., Gustafsson, M. G. L., and Sedat, J. W. (2012). Interferometer-based structured-illumination microscopy utilizing complementary phase relationship through constructive and destructive image detection by two cameras. Journal of Microscopy, 246, 229–236.

    Google Scholar 

  • Sheppard, C. J. R. (2007). Fundamentals of superresolution. Micron, 38, 165–169.

    Google Scholar 

  • Wicker, K. (2013). Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space. Optics Express, 21, 24692–24701.

    Google Scholar 

  • Wicker, K., and Heintzmann, R. (2014). Resolving a misconception about structured illumination. Nature Photonics, 8, 341–344.

    Google Scholar 

  • Wilson, T., Neil, M. A. A., and JuÅ¡kaitis, R. (1998). Real-time three-dimensional imaging of microscopic structures. Journal of Microscopy, 191, 116–118.

    Google Scholar 

  • Zalevsky, Z., and Mendlovic, D. (2004). Optical Superresolution. Springer Series in Optical Sciences. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry R. Masters .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masters, B.R. (2020). Structured Illumination Microscopy. In: Superresolution Optical Microscopy. Springer Series in Optical Sciences, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21691-7_13

Download citation

Publish with us

Policies and ethics