Skip to main content

Numerical Methods for MEMS Design: Automated Optimization

  • Chapter
  • First Online:
MEMS: Field Models and Optimal Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 573 ))

  • 865 Accesses

Abstract

As stated in Sect. 10.3, the problem of identifying or reconstructing a given quantity, based on known data e.g. measurements, is called an inverse problem. Loosely speaking, an inverse problem is one in which an effect is measured and the cause of it is to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bayraktar Z, Komurcu M, Bossard JA, Werner DH (2013) The wind driven optimization technique and its application in electromagnetics. IEEE Trans Antennas Propag 61(5):2745–2757

    Article  MathSciNet  Google Scholar 

  2. Costa Silva MA, Coelho LS, Lebensztajn L (2012) Multiobjective biogeography-based optimization based on predator-prey approach. IEEE Trans Magnetics 48(2):951–954

    Article  Google Scholar 

  3. Di Barba P (2010) Multiobjective shape design in electricity and magnetism. Springer

    Google Scholar 

  4. Di Barba P (2016) Multi-objective wind-driven optimisation and magnet design. Electron Lett 52(14):1216–1218

    Article  Google Scholar 

  5. Di Barba P, Dughiero F, Forzan M, Mognaschi ME, Sieni E (2018) New solutions to a multi-objective benchmark problem of induction heating: an application of computational biogeography and evolutionary algorithms. Arch Electr Eng 67(1):139–149

    Google Scholar 

  6. Di Barba P, Dughiero F, Mognaschi ME, Savini A, Wiak S (2016) Biogeography-inspired multiobjective optimization and MEMS design. IEEE Trans Magn 52(3)

    Google Scholar 

  7. Di Barba P, Gotszalk T, Majstrzyk W, Mognaschi ME, Orłowska K, Wiak S, Sierakowski A (2018) Optimal design of electromagnetically actuated MEMS cantilevers. Sensors (Switzerland) 18(8)

    Google Scholar 

  8. Di Barba P, Mognaschi ME (2009) Industrial design with multiple criteria: shape optimization of a permanent-magnet generator. IEEE Trans Magn 45(3):1482–1485

    Article  Google Scholar 

  9. Di Barba P, Mognaschi ME, Przybylski M, Rezaei N, Slusarek B, Wiak S (2018) Geometry optimization for a class of switched-reluctance motors: a bi-objective approach. Int J Appl Electromagnet Mech 56(S1):S107–S122

    Article  Google Scholar 

  10. Di Barba P, Mognaschi ME, Rezaei N, Lowther DA, Rahman T (2019) Many-objective Shape Optimisation of IPM Motors for Electric Vehicle Traction. in press on Int J Appl Electromagnetics Mech IJAEM

    Google Scholar 

  11. Di Barba P, Mognaschi ME, Savini A (2007) Synthesizing a field source for magnetic stimulation of peripheral nerves. IEEE Trans Magn 43(11):4023–4029

    Article  Google Scholar 

  12. Di Barba P, Mognaschi ME, Savini A, Wiak S (2016) Island biogeography as a paradigm for MEMS optimal design. Int J Appl Electromagnetics Mech IJAEM 51(s1):97–105

    Article  Google Scholar 

  13. Di Barba P, Mognaschi ME, Venini P, Wiak S (2017) Biogeography-inspired multiobjective optimization for helping MEMS synthesis. Arch Electr Eng 66(3):607–623

    Article  Google Scholar 

  14. Di Barba P, Mognaschi ME, Wiak S, Przybylski M, Slusarek B (2018) Optimization and measurements of switched reluctance motors exploiting soft magnetic composite. Int J Appl Electromagnet Mech 57(S1):S83–S93

    Article  Google Scholar 

  15. Di Barba P, Savini A, Wiak S (2008) Field models in electricity and magnetism. Springer, Berlin, Germany

    Book  Google Scholar 

  16. Di Barba P, Savini A, Wiak S (2017) Higher-order multiobjective design of MEMS. Int J Appl Electromagnet Mech 53(S2):S239–S247

    Article  Google Scholar 

  17. Di Barba P, Wiak S (2015) Evolutionary computing and optimal design of MEMS. IEEE/ASME Trans Mechatron 20(4):1660–1667

    Article  Google Scholar 

  18. Macarthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press

    Google Scholar 

  19. Mognaschi ME (2017) Micro biogeography-inspired multi-objective optimisation for industrial electromagnetic design. Electron Lett 53(22)

    Article  Google Scholar 

  20. Roy PK, Ghoshal SP, Thakur S (2010) Multi-objective optimal power flow using biogeography based optimization. Electric Power Compon Syst 38:1406–1426

    Article  Google Scholar 

  21. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  22. Singh U, Kumar H, Kamal TS (2010) Design of Yagi-Uda antenna using biogeography based optimization. IEEE Trans Antennas Propag 58(10):3375–3379

    Article  Google Scholar 

  23. Singh S, Mittal E, Sachdeva G (2012) NSBBO for gain-impedance optimization of Yagi-Uda antenna design. Proc World Congress Inf Commun Technol 2012:856–860

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Di Barba .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Barba, P., Mognaschi, M.E. (2020). Numerical Methods for MEMS Design: Automated Optimization. In: MEMS: Field Models and Optimal Design. Lecture Notes in Electrical Engineering, vol 573 . Springer, Cham. https://doi.org/10.1007/978-3-030-21496-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21496-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21495-1

  • Online ISBN: 978-3-030-21496-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics