Skip to main content

Detecting Wine Adulterations Employing Robust Mixture of Factor Analyzers

  • Conference paper
  • First Online:
Statistical Learning of Complex Data (CLADAG 2017)

Abstract

An authentic food is one that is what it claims to be. Nowadays, more and more attention is devoted to the food market: stakeholders, throughout the value chain, need to receive exact information about the specific product they are commercing with. To ascertain varietal genuineness and distinguish potentially doctored food, in this paper we propose to employ a robust mixture estimation method. Particularly, in a wine authenticity framework with unobserved heterogeneity, we jointly perform genuine wine classification and contamination detection. Our methodology models the data as arising from a mixture of Gaussian factors and depicts the observations with the lowest contributions to the overall likelihood as illegal samples. The advantage of using robust estimation on a real wine dataset is shown, in comparison with many other classification approaches. Moreover, the simulation results confirm the effectiveness of our approach in dealing with an adulterated dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baek, J., McLachlan, G.J., Flack, L.K.: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1298–1309 (2010)

    Article  Google Scholar 

  2. Bouguila, N., Ziou, D.: A powerful finite mixture model based on the generalized Dirichlet distribution: unsupervised learning and applications. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 1, pp. 280–283. IEEE, Piscataway (2004)

    Google Scholar 

  3. Cerioli, A., García-Escudero, L.A., Mayo-Iscar, A., Riani, M.: Finding the number of normal groups in model-based clustering via constrained likelihoods. J. Comput. Graph. Stat. 27(2), 404–416 (2018)

    Article  MathSciNet  Google Scholar 

  4. Day, N.E.: Estimating the components of a mixture of normal distributions. Biometrika 56(3), 463–474 (1969)

    Article  MathSciNet  Google Scholar 

  5. Doherty, K.A.J., Adams, R.G., Davey, N.: Unsupervised learning with normalised data and non-Euclidean norms. Appl. Soft Comput. 7(1), 203–210 (2007)

    Article  Google Scholar 

  6. Fop, M., Murphy, T.B., Raftery, A.E.: mclust 5: clustering, classification and density estimation using gaussian finite mixture models. R J. XX(August), 1–29 (2016)

    Google Scholar 

  7. Forina, M., Armanino, C., Castino, M., Ubigli, M.: Multivariate data analysis as a discriminating method of the origin of wines. Vitis 25(3), 189–201 (1986)

    Google Scholar 

  8. García-Escudero, L.A., Gordaliza, A., Greselin, F., Ingrassia, S., Mayo-Iscar, A.: The joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers. Comput. Stat. Data Anal. 99, 131–147 (2016)

    Article  MathSciNet  Google Scholar 

  9. Greselin, F., Ingrassia, S.: Maximum likelihood estimation in constrained parameter spaces for mixtures of factor analyzers. Stat. Comput. 25(2), 215–226 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hennig, C.: Breakdown points for maximum likelihood estimators of location-scale mixtures. Ann. Stat. 32(4), 1313–1340 (2004)

    Article  MathSciNet  Google Scholar 

  11. Ingrassia, S.: A likelihood-based constrained algorithm for multivariate normal mixture models. Stat. Methods Appl. 13(2), 151–166 (2004)

    Article  MathSciNet  Google Scholar 

  12. Jackson, R.S.: Wine Science: Principles and Application. Academic press, Elsevier (2008)

    Google Scholar 

  13. Lee, S.X., McLachlan, G.J.: Finite mixtures of canonical fundamental skew t-distributions: the unification of the restricted and unrestricted skew t-mixture models. Stat. Comput. 26(3), 573–589 (2016)

    Article  MathSciNet  Google Scholar 

  14. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: cluster: Cluster analysis basics and extensions, R package version 2.1.0 – For new features, see the ’Changelog’ file (in the package source) (2019)

    Google Scholar 

  15. McLachlan, G.J., Bean, R.W., Ben-Tovim Jones, L.: Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Comput. Stat. Data Anal. 51(11), 5327–5338 (2007)

    Article  MathSciNet  Google Scholar 

  16. McNicholas, P.D., Murphy, T.B.: Parsimonious Gaussian mixture models. Stat. Comput. 18(3), 285–296 (2008)

    Article  MathSciNet  Google Scholar 

  17. McNicholas, P.D., ElSherbiny, A., McDaid, A.F., Murphy, T.B.: pgmm: Parsimonious Gaussian mixture models, R package version 1.2.3. https://CRAN.R-project.org/package=pgmm (2018)

  18. Neykov, N., Filzmoser, P., Dimova, R., Neytchev, P.: Robust fitting of mixtures using the trimmed likelihood estimator. Comput. Stat. Data Anal. 52(1), 299–308 (2007)

    Article  MathSciNet  Google Scholar 

  19. Roberts, S.J., Everson, R., Rezek, I.: Maximum certainty data partitioning. Pattern Recognit. 33(5), 833–839 (2000)

    Article  Google Scholar 

  20. Shi, T., Horvath, S.: Unsupervised learning with random forest predictors. J. Comput. Graph. Stat. 15(1), 118–138 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cappozzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cappozzo, A., Greselin, F. (2019). Detecting Wine Adulterations Employing Robust Mixture of Factor Analyzers. In: Greselin, F., Deldossi, L., Bagnato, L., Vichi, M. (eds) Statistical Learning of Complex Data. CLADAG 2017. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-030-21140-0_2

Download citation

Publish with us

Policies and ethics