Skip to main content

Assessing Criticality in Experiments

  • Chapter
  • First Online:
The Functional Role of Critical Dynamics in Neural Systems

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 11))

Abstract

Criticality is considered an attractive candidate state for the dynamics and function of the brain, because in models criticality maximizes a number of properties related to information transmission and computations. These include the dynamic range, the susceptibility, the sensitivity to input, the correlation length, and the pattern diversity. And indeed, numerous studies accumulated evidence that supports the criticality hypothesis. However, some observations are also contradictory. The latter might in part be explained by the fact that criticality is a “full system” property, whereas experimental neural recordings can only assess a tiny part of the full network (“subsampling problem”). Here, we first recapitulate the basic properties of a dynamical system at and around the critical point in a pedagogic manner. We show how subsampling can bias inference about the underling network dynamics, and then present two recent analytical approaches to overcome the subsampling bias, based either on neural avalanches, or on the time-series of neural activity proper. The novel approach typically allows quantify the distance to criticality from less then ten recorded neurons and a few minutes of recording only. Thereby, it offers a novel and very powerful approach to assess criticality and task-related deviations thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, W., Wegner, A.E., Gaunt, R.E., Deane, C.M., Reinert, G.: Comparison of large networks with sub-sampling strategies. Sci. Rep. 6, 28955 (2016)

    Google Scholar 

  2. Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., Singer W., Vicente R.: Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31(September 2014), 51–61, 2015

    Google Scholar 

  3. Arviv, O., Goldstein, A., Shriki, O.: Near-critical dynamics in stimulus-evoked activity of the human brain and its relation to spontaneous resting-state activity. J. Neurosci. 35(41), 13927–13942 (2015)

    Article  CAS  Google Scholar 

  4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of \(1/f\) noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Google Scholar 

  5. Bak, P., Chen, K., Creutz, M.: Self-organized criticality in the “Game of Life”. Nature 342(6251), 780–782 (1989)

    Article  Google Scholar 

  6. Bédard, C., Kröger, H., Destexhe, A.: Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys. Rev. Lett. 97(11), 1–4 (2006)

    Google Scholar 

  7. Beggs, J., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci 23, 11167–11177 (2003)

    Article  CAS  Google Scholar 

  8. Beggs, J., Plenz, D.: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24(22), 5216–5229 (2004)

    Article  CAS  Google Scholar 

  9. Bellay, T., Klaus, A., Seshadri, S., Plenz, D.: Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state. eLife 4, 1–25 (2015)

    Google Scholar 

  10. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16(7), 1413–1436 (2004)

    Article  Google Scholar 

  11. Boedecker, J., Obst, O., Lizier, J.T., Mayer, N.M., Asada, M.: Information processing in echo state networks at the edge of chaos. Theory Biosci. 131(3), 205–213 (2012)

    Google Scholar 

  12. Bornholdt, S., Rohlf, T.: Topological evolution of dynamical networks. Phys. Rev. Lett. 84(26), 6114–6117 (2000)

    Article  CAS  Google Scholar 

  13. Bornholdt, S., Röhl, T.: Self-organized critical neural networks. Phys. Rev. E 67(6), 066118 (2003)

    Google Scholar 

  14. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462–5 (2006)

    Article  CAS  Google Scholar 

  15. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)

    Article  Google Scholar 

  16. Chaudhuri, R., Knoblauch, K., Gariel, M.A., Kennedy, H., Wang, X.J.: A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88(2), 419–431 (2015)

    Google Scholar 

  17. Chen, D.-M., Wu, S., Guo, A., Yang, Z.: Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons. J. Phys. A Math. Gen. 28, 5177 (1995)

    Google Scholar 

  18. Corral, Á., Pérez, C.J., Díaz-Guilera, A.: Self-organized criticality induced by diversity. Phys. Rev. Lett. 78(8), 1492–1495 (1997)

    Article  CAS  Google Scholar 

  19. Da Silva, L., Papa, A.R.R., De Souza, A.M.C.: Criticality in a simple model for brain functioning. Phys. Lett. Sect. A Gen. At. Solid State Phys. 242(6), 343–348 (1998)

    Google Scholar 

  20. Das, A., Levina, A.: Critical neuronal models with relaxed timescales separation (2018). arXiv:1808.04196

  21. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)

    Article  CAS  Google Scholar 

  22. Drossel, B., Schwabl, F.: Self-organized critical forest-fire model. Phys. Rev. Lett. 69, 1629–1632 (1992)

    Article  CAS  Google Scholar 

  23. Drossel, B.: Self-organized criticality and synchronization in a forest-fire model. Phys. Rev. Lett. 76(6), 936–939 (1996)

    Article  CAS  Google Scholar 

  24. Dunkelmann, S., Radons, G.: Neural networks and abelian sandpile models of self-organized criticality. In: Marinaro, M., Morasso, P.G. (eds.) ICANN ’94 Proceedings of the International Conference on Artificial Neural Networks, p. 867. Springer, Berlin (1994)

    Google Scholar 

  25. Earn, D.J.: A simple model for complex dynamical transitions in epidemics. Science 287(5453), 667–670 (2000)

    Article  CAS  Google Scholar 

  26. Eurich, C.W., Herrmann, M., Ernst, U.: Finite-size effects of avalanche dynamics. Phys. Rev. E 66, 066137–1–15 (2002)

    Google Scholar 

  27. Farrington, C.P., Kanaan, M.N., Gay, N.J.: Branching process models for surveillance of infectious diseases controlled by mass vaccination. Biostat. (Oxford, England) 4(2), 279–95 (2003)

    Article  CAS  Google Scholar 

  28. Friedman, N., Ito, S., Brinkman, B.A.W., Shimono, M., Lee DeVille, R.E., Dahmen, K.A., Beggs, J.M., Butler, T.C.: Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett. 108(20), 208102 (2012)

    Google Scholar 

  29. Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., Gerstner, W.: Extraction of network topology from multi-electrode recordings: is there a small-world effect? Front. Comput. Neurosci. 5, 4 (2011)

    Article  Google Scholar 

  30. González-Bailón, S., Wang, N., Rivero, A., Borge-Holthoefer, J., Moreno, Y.: Assessing the bias in samples of large online networks. Soc. Netw. 38, 16–27 (2014)

    Article  Google Scholar 

  31. Haccou, P., Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes: Variation, Growth, and Extinction of Populations, vol. 5. Cambridge university press, Cambridge (2005)

    Google Scholar 

  32. Hahn, G., Petermann, T., Havenith, M.N., Yu, S., Singer, W., Plenz, D., Nikolic, D.: Neuronal avalanches in spontaneous activity in vivo. J. Neurophysiol. 104(6), 3312–2222 (2010)

    Google Scholar 

  33. Hahn, G., Ponce-Alvarez, A., Monier, C., Benvenuti, G., Kumar, A., Chavane, F., Deco, G., Frégnac, Y.: Spontaneous cortical activity is transiently poised close to criticality. PLoS Comput. Biol. 13(5), 1–29 (2017)

    Article  Google Scholar 

  34. Haldeman, C., Beggs, J.: Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys. Rev. Lett. 94, 058101 (2005)

    Article  Google Scholar 

  35. Han, J.-D.J., Dupuy, D., Bertin, N., Cusick, M.E., Vidal, M.: Effect of sampling on topology predictions of protein-protein interaction networks. Nat. Biotechnol. 23(7), 839 (2005)

    Google Scholar 

  36. Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963)

    Book  Google Scholar 

  37. Hauri, A.M., Westbrock, H.-J., Claus, H., Geis, S., Giernat, S., For\(\beta \)bohm, M., Uphoff, H.: Electronic outbreak surveillance in Germany: a first evaluation for nosocomial norovirus outbreaks. PLoS One, 6(3), e17341 (2011)

    Google Scholar 

  38. Heathcote, C.R.: A branching process allowing immigration. J. R. Stat. Soc. Ser. B (Methodol.) 27(1), 138–143 (1965)

    Google Scholar 

  39. Hellenbrand, W., Siedler, A., Tischer, A., Meyer, C., Reiter, S., Rasch, G., Teichmann, D., Santibanez, S., Altmann, D., Claus, H., Kramer, M.: Progress toward measles elimination in Germany. J. Infect. Dis. 187(Suppl 1), S208–S216 (2003)

    Google Scholar 

  40. Heyde, C.C., Seneta, E.: Estimation theory for growth and immigration rates in a multiplicative process. J. Appl. Probab. 9(2), 235 (1972)

    Google Scholar 

  41. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Google Scholar 

  42. Jing, H., Takigawa, M.: Topographic analysis of dimension estimates of EEG and filtered rhythms in epileptic patients with complex partial seizures. Biol. Cybern. 83, 391 (2000)

    Article  CAS  Google Scholar 

  43. Khanin, R., Wit, E.: How scale-free are biological networks. J. Comput. Biol. 13(3), 810–818 (2006)

    Article  CAS  Google Scholar 

  44. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2, 348–352 (2006)

    Article  CAS  Google Scholar 

  45. Klaus, A., Shan, Y., Plenz, D.: Statistical analyses support power law distributions found in neuronal avalanches. PloS One 6(5), e19779 (2011)

    Article  CAS  Google Scholar 

  46. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Phys. D Nonlinear Phenom. 42(1–3), 12–37 (1990)

    Google Scholar 

  47. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636. ACM (2006)

    Google Scholar 

  48. Levina, A., Herrmann, J.M., Denker, M.: Critical branching processes in neural networks. PAMM, 7(1), 1030701–1030702 (2007)

    Google Scholar 

  49. Levina, A., Herrmann, J.M., Geisel, T.: Theoretical neuroscience of self-organized criticality: from formal approaches to realistic models. In: Criticality in Neural Systems, pp. 417–436. Wiley-VCH Verlag GmbH & Co. KGaA (2014)

    Google Scholar 

  50. Levina, A., Priesemann, V.: Subsampling scaling. Nat. Commun. 8, 15140 (2017)

    Article  CAS  Google Scholar 

  51. Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M., Einevoll, G.T.: Modeling the spatial reach of the LFP. Neuron 72(5), 859–872 (2011)

    Article  Google Scholar 

  52. Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., Ilmoniemi, R.J.: Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. Off. J. Soc. Neurosci. 21(4), 1370–1377 (2001)

    Article  CAS  Google Scholar 

  53. London, M., Roth, A., Beeren, L., Häusser, M., Latham, P.E.: Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466(7302), 123–127 (2010)

    Google Scholar 

  54. Lu, E.T., Hamilton, R.J.: Avalanches and the distribution of solar flares. Astrophys. J. 380, L89–L92 (1991)

    Google Scholar 

  55. Marshall, N., Timme, N.M., Bennett, N., Ripp, M., Lautzenhiser, E., Beggs, J.M.: Analysis of power laws, shape collapses, and neural complexity: new techniques and matlab support via the ncc toolbox. Front. Physiol. 7, 250 (2016)

    Google Scholar 

  56. Meisel, C., Storch, A., Hallmeyer-Elgner, S., Bullmore, E., Gross, T.: Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comput. Biol. 8(1), e1002312 (2012)

    Google Scholar 

  57. Middendorf, M., Ziv, E., Wiggins, C.H.: Inferring network mechanisms: the drosophila melanogaster protein interaction network. Proc. Natl. Acad. Sci. USA 102(9), 3192–3197 (2005)

    Google Scholar 

  58. Milton, J.G.: Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur. J. Neurosci. 36(2), 2156–63 (2012)

    Google Scholar 

  59. Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai, X., Padoa-Schioppa, C., Pasternak, T., Seo, H., Lee, D. and Wang, X.-J.: A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17(12), 1661–1663 (2014)

    Google Scholar 

  60. Orbanz, P.: Subsampling large graphs and invariance in networks (2017). arXiv:1710.04217

  61. Pakes, A.G.: Branching processes with immigration. J. Appl. Probab. 8(1), 32 (1971)

    Article  Google Scholar 

  62. Palva, J.M., Zhigalov, A., Hirvonen, J., Korhonen, O., Linkenkaer-Hansen, K., Palva, S.: Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc. Natl. Acad. Sci. 110(9), 3585–3590 (2013)

    Google Scholar 

  63. Papoz, L., Balkau, B., Lellouch, J.: Case counting in epidemiology: limitations of methods based on multiple data sources. Int. J. Epidemiol. 25(3), 474–478 (1996)

    Article  CAS  Google Scholar 

  64. Pasquale, V., Massobrio, P., Bologna, L.L., Chiappalone, M., Martinoia, S.: Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 153(4), 1354–1369 (2008)

    Article  CAS  Google Scholar 

  65. Neto, J.P., Priesemann, V.: Coarse sampling bias inference of criticality in neural system. In preparation

    Google Scholar 

  66. Plenz, D., Niebur, E., Schuster, H.G.: Criticality in Neural Systems. Wiley, New York (2014)

    Google Scholar 

  67. Priesemann, V., Munk, M., Wibral, M.: Subsampling effects in neuronal avalanche distributions recorded in vivo. BMC Neurosci. 10(1), 40 (2009)

    Article  Google Scholar 

  68. Priesemann, V., Shriki, O.: Can a time varying external drive give rise to apparent criticality in neural systems? PLOS Comput. Biol. 14(5), e1006081 (2018)

    Article  Google Scholar 

  69. Priesemann, V., Valderrama, M., Wibral, M., Le Van Quyen, M.: Neuronal avalanches differ from wakefulness to deep sleep-evidence from intracranial depth recordings in humans. PLOS Comput. Biol. 9(3), e1002985 (2013)

    Google Scholar 

  70. Priesemann, V., Wibral, M., Valderrama, M., Pröpper, R., Le Van, M., Quyen, T.G., Triesch, J., Nikolić, D., Munk, M.H.J.: Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014)

    Article  Google Scholar 

  71. Privman, V.: Finite-size scaling theory. In: Finite Size Scaling and Numerical Simulation of Statistical Systems, vol. 1 (1990)

    Google Scholar 

  72. Pruessner, G.: Self-organised criticality: theory, models and characterisation. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  73. Rafiei, D.: Effectively visualizing large networks through sampling. In: IEEE Visualization. VIS 05, pp. 375–382. IEEE (2005)

    Google Scholar 

  74. Rezvanian, A., Meybodi, M.R.: A new learning automata-based sampling algorithm for social networks. Int. J. Commun. Syst. 30(5) (2017)

    Google Scholar 

  75. Ribeiro, T.L., Copelli, M., Caixeta, F., Belchior, H., Chialvo, D.R., Nicolelis, M.A.L., Ribeiro, S.: Spike avalanches exhibit universal dynamics across the sleep-wake cycle. PLoS One 5(11), e14129 (2010)

    Google Scholar 

  76. Ribeiro, T.L., Ribeiro, S., Belchior, H., Caixeta, F., Copelli, M.: Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches. PloS One 9(4), e94992 (2014)

    Article  Google Scholar 

  77. Sethna, J.: Statistical Mechanics: Entropy, Order Parameters, and Complexity, vol. 14. Oxford University Press, Oxford (2006)

    Google Scholar 

  78. Shaukat, A., Thivierge, J.-P.: Statistical evaluation of waveform collapse reveals scale-free properties of neuronal avalanches. Front. Comput. Neurosci. 10, 29 (2016)

    Article  Google Scholar 

  79. Shew, W.L., Yang, H., Petermann, T., Roy, R., Plenz, D.: Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 29(49), 15595–15600 (2009)

    Google Scholar 

  80. Shriki, O., Alstott, J., Carver, F., Holroyd, T., Henson, R.N.A., Smith, M.L., Coppola, R., Bullmore, E., Plenz, D.: Neuronal avalanches in the resting meg of the human brain. J. Neurosci. 33(16), 7079–7090 (2013)

    Google Scholar 

  81. Stumpf, M.P.H., Wiuf, C., May, R.M.: Subnets of scale-free networks are not scale-free: sampling properties of networks. PNAS 102(12), 4221–4224 (2005)

    Article  CAS  Google Scholar 

  82. Stumpf, M.P.H., Wiuf, C.: Sampling properties of random graphs: the degree distribution. Phys. Rev. E 72, 36118 (2005)

    Google Scholar 

  83. Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R.: Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 3, 15 (2012)

    Google Scholar 

  84. Tetzlaff, C., Okujeni, S., Egert, U., Wörgötter, F., Butz, M.: Self-organized criticality in developing neuronal networks. PLoS Comput. Biol. 6(12), e1001013 (2010)

    Article  Google Scholar 

  85. Tomen, N., Rotermund, D., Ernst, U.: Marginally subcritical dynamics explain enhanced stimulus discriminability under attention. Front. Syst. Neurosci. 8(August), 1–15 (2014)

    Google Scholar 

  86. Touboul, J., Destexhe, A.: Power-law statistics and universal scaling in the absence of criticality. Phys. Rev. E 95(1), 1–15 (2017)

    Article  Google Scholar 

  87. Wagenaar, D.A., Pine, J., Potter, S.M.: An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci. 7(1), 1 (2006)

    Article  Google Scholar 

  88. Wei, C.Z.: Convergence rates for the critical branching process with immigration. Stat. Sin. 1, 175–184 (1991)

    Google Scholar 

  89. Wibral, M., Lizier, J.T., Priesemann, V.: Bits from brains for biologically inspired computing. Front. Robot. AI 2(March), 1–25 (2015)

    Google Scholar 

  90. Wichmann, O., Siedler, A., Sagebiel, D., Hellenbrand, W., Santibanez, S., Mankertz, A., Vogt, G., Van Treeck, U., Krause, G.: Further efforts needed to achieve measles elimination in Germany: results of an outbreak investigation. Bull. World Health Organ. 87(2), 108–115 (2009)

    Article  Google Scholar 

  91. Wilting, J., Dehning, J., Neto, J.P., Rudelt, L., Wibral, M., Zierenberg, J., Priesemann, V.: Operating in a reverberating regime enables rapid tuning of network states to task requirements. Front. Syst. Neurosci. 12, 55 (2018)

    Google Scholar 

  92. Wilting, J., Priesemann, V.: Inferring collective dynamical states from widely unobserved systems. Nat. Commun. 9(1), 2325 (2018)

    Article  Google Scholar 

  93. Wilting, J., Priesemann, V.: On the ground state of spiking network activity in mammalian cortex (2018). arXiv:1804.07864

  94. Worrell, G.A., Cranstoun, S.D., Echauz, J., Litt, B.: Evidence for self-organized criticality in human epileptic hippocampus. NeuroReport 13(16), 2017–2021 (2002)

    Article  Google Scholar 

  95. Yaghoubi, M., De Graaf, T., Orlandi, J.G., Girotto, F., Colicos, M.A., Davidsen, J.: Neuronal avalanche dynamics indicates different universality classes in neuronal cultures. Sci. Rep. 8(1), 1–11 (2018)

    Article  CAS  Google Scholar 

  96. Yu, S., Klaus, A., Yang, H., Plenz, D.: Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions. PloS One 9(6), e99761 (2014)

    Article  Google Scholar 

  97. Zierenberg, J., Wilting, J., Priesemann, V.: Homeostatic plasticity and external input shape neural network dynamics. Phys. Rev. X 8(3), 031018 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Priesemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Priesemann, V., Levina, A., Wilting, J. (2019). Assessing Criticality in Experiments. In: Tomen, N., Herrmann, J., Ernst, U. (eds) The Functional Role of Critical Dynamics in Neural Systems . Springer Series on Bio- and Neurosystems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-20965-0_11

Download citation

Publish with us

Policies and ethics