Skip to main content

Robust Deep Multi-modal Learning Based on Gated Information Fusion Network

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Abstract

The goal of multi-modal learning is to use complementary information on the relevant task provided by the multiple modalities to achieve reliable and robust performance. Recently, deep learning has led significant improvement in multi-modal learning by allowing for fusing high level features obtained at intermediate layers of the deep neural network. This paper addresses a problem of designing robust deep multi-modal learning architecture in the presence of the modalities degraded in quality. We introduce deep fusion architecture for object detection which processes each modality using the separate convolutional neural network (CNN) and constructs the joint feature maps by combining the intermediate features obtained by the CNNs. In order to facilitate the robustness to the degraded modalities, we employ the gated information fusion (GIF) network which weights the contribution from each modality according to the input feature maps to be fused. The combining weights are determined by applying the convolutional layers followed by the sigmoid function to the concatenated intermediate feature maps. The whole network including the CNN backbone and GIF is trained in an end-to-end fashion. Our experiments show that the proposed GIF network offers the additional architectural flexibility to achieve the robust performance in handling some degraded modalities.

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government(MSIT) (2016-0-00564, Development of Intelligent Interaction Technology Based on Context Awareness and Human Intention Understanding).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We follow the notations of the SSD in [20].

  2. 2.

    Our extensive experiments show that additional depth over single convolutional layer does not help improving the effectiveness of the gating operation.

References

  1. Arevalo, J., Solorio, T., Montes-y Gómez, M., González, F.A.: Gated multimodal units for information fusion. arXiv preprint arXiv:1702.01992 (2017)

  2. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2018)

    Article  Google Scholar 

  3. Chabot, F., Chaouch, M., Rabarisoa, J., Teulière, C., Chateau, T.: Deep manta: a coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image. In: Proceedings of IEEE Conference on Computer Vision Pattern Recog (CVPR) (2017)

    Google Scholar 

  4. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  5. Chen, X., et al.: 3D object proposals for accurate object class detection. In: Advance in Neural Information Processing Systems (2015)

    Google Scholar 

  6. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M.A., Burgard, W.: Multimodal deep learning for robust RGB-D object recognition. In: Proceedings of IEEE/RSJ Interernational Conference on Intelligent Robots and Systems (IROS) (2015)

    Google Scholar 

  8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Proceedings of IEEE Confernce on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: Proceedings IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  10. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23

    Chapter  Google Scholar 

  11. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Hoffman, J., Gupta, S., Darrell, T.: Learning with side information through modality hallucination. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  15. Janoch, A., et al.: A category-level 3D object dataset: putting the kinect to work. In: Fossati, A., Gall, J., Grabner, H., Konolige, K., Ren, X. (eds.) Consumer Depth Cameras for Computer Vision. ACVPR, pp. 141–165. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4640-7_8

    Chapter  Google Scholar 

  16. Kahou, S.E., et al.: Emonets: multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 10, 99–111 (2015)

    Article  Google Scholar 

  17. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3D proposal generation and object detection from view aggregation. arXiv preprint arXiv:1712.02294 (2017)

  18. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  19. Li, Y., Zhang, J., Cheng, Y., Huang, K., Tan, T.: Semantics-guided multi-level RGB-D feature fusion for indoor semantic segmentation. In: 2017 IEEE International Conference on Image Processing (ICIP) (2017)

    Google Scholar 

  20. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Mroueh, Y., Marcheret, E., Goel, V.: Deep multimodal learning for audio-visual speech recognition. In: Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) (2015)

    Google Scholar 

  22. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of International Conference on Machine Learning (ICML) (2011)

    Google Scholar 

  23. Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H.G., Ogata, T.: Audio-visual speech recognition using deep learning. Appl. Intell. 42(4), 722–737 (2015)

    Article  Google Scholar 

  24. Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In: Proceedings of Conference Empirical Methods in Natural Language Processing, pp. 2539–3544 (2015)

    Google Scholar 

  25. Radu, V., Lane, N.D., Bhattacharya, S., Mascolo, C., Marina, M.K., Kawsar, F.: Towards multimodal deep learning for activity recognition on mobile devices. In: Proceedings of 2016 ACM Interernational Joint Confernce on Pervasive and Ubiquitous Computing, pp. 185–188 (2016)

    Google Scholar 

  26. Ramachandram, D., Taylor, G.W.: Deep multimodal learning. IEEE Signal Process. Mag. 34(6), 96–108 (2017)

    Article  Google Scholar 

  27. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of IEEE Confernce on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  28. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  30. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  33. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep boltzmann machines. J. Mach. Learn. Res. 15, 2949–2980 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Xiao, J., Owens, A., Torralba, A.: Sun3D: a database of big spaces reconstructed using SFM and object labels. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  35. Xu, D., Anguelov, D., Jain, A.: Pointfusion: deep sensor fusion for 3D bounding box estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  36. Xu, X., Li, Y., Wu, G., Luo, J.: Multi-modal deep feature learning for RGB-D object detection. Pattern Recogn. 72, 300–313 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Won Choi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 128 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, J., Koh, J., Kim, Y., Choi, J., Hwang, Y., Choi, J.W. (2019). Robust Deep Multi-modal Learning Based on Gated Information Fusion Network. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics