Skip to main content

Solving Minimum Cost Lifted Multicut Problems by Node Agglomeration

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

Abstract

Despite its complexity, the minimum cost lifted multicut problem has found a wide range of applications in recent years, such as image and mesh decomposition or multiple object tracking. Its solutions are decompositions of a graph into an optimal number of segments which are optimized w.r.t. a cost function defined on a superset of the edge set. While the currently available solvers for this problem provide high quality solutions in terms of the task to be solved, they can have long computation times for more difficult problem instances. Here, we propose two variants of a heuristic solver (primal feasible heuristic), which greedily generate solutions within a bounded amount of time. Evaluations on image and mesh segmentation benchmarks show the high quality of these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mpi-inf.mpg.de/fileadmin/inf/d2/levinkov/iccv-2015/code.tar.gz.

References

  1. Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: 2015 IEEE International Conference on Computer Vision (ICCV). pp. 1751–1759 (2015)

    Google Scholar 

  2. Tang, S., Andriluka, M., Andres, B., Schiele, B.: Multi people tracking with lifted multicut and person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  3. Keuper, M.: Higher-order minimum cost lifted multicuts for motion segmentation. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  4. Beier, T., Andres, B., Köthe, U., Hamprecht, F.A.: An efficient fusion move algorithm for the minimum cost lifted multicut problem. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 715–730. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_44

    Chapter  Google Scholar 

  5. Beier, T., et al.: Multicut brings automated neurite segmentation closer to human performance. Nat. Methods 14, 101 (2017)

    Article  Google Scholar 

  6. Chopra, S., Rao, M.: The partition problem. Math. Programm. 59, 87–115 (1993)

    Article  MathSciNet  Google Scholar 

  7. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. AC, vol. 15. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-04295-9

    Book  MATH  Google Scholar 

  8. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE TPAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  9. Alush, A., Goldberger, J.: Ensemble segmentation using efficient integer linear programming. TPAMI 34, 1966–1977 (2012)

    Article  Google Scholar 

  10. Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic image segmentation with closedness constraints. In: ICCV (2011)

    Google Scholar 

  11. Andres, B., et al.: Globally Optimal Closed-Surface Segmentation for Connectomics. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_56

    Chapter  Google Scholar 

  12. Andres, B., et al.: Segmenting planar superpixel adjacency graphs w.r.t. non-planar superpixel affinity graphs. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 266–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40395-8_20

    Chapter  Google Scholar 

  13. Bagon, S., Galun, M.: Large scale correlation clustering optimization. CoRR abs/1112.2903 (2011)

    Google Scholar 

  14. Beier, T., Hamprecht, F.A., Kappes, J.H.: Fusion moves for correlation clustering. In: CVPR (2015)

    Google Scholar 

  15. Beier, T., Kroeger, T., Kappes, J., Köthe, U., Hamprecht, F.: Cut, glue, & cut: a fast, approximate solver for multicut partitioning. In: CVPR (2014)

    Google Scholar 

  16. Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schnörr, C.: Globally optimal image partitioning by multicuts. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 31–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23094-3_3

    Chapter  Google Scholar 

  17. Kappes, J.H., Speth, M., Reinelt, G., Schnörr, C.: Higher-order segmentation via multicuts. CoRR abs/1305.6387 (2013)

    Google Scholar 

  18. Kappes, J.H., Swoboda, P., Savchynskyy, B., Hazan, T., Schnörr, C.: Probabilistic correlation clustering and image partitioning using perturbed multicuts. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 231–242. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_19

    Chapter  MATH  Google Scholar 

  19. Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for image segmentation. In: NIPS (2011)

    Google Scholar 

  20. Kim, S., Yoo, C.D., Nowozin, S.: Image segmentation using higher-order correlation clustering. IEEE TPAMI 36, 1761–1774 (2014)

    Article  Google Scholar 

  21. Nowozin, S., Jegelka, S.: Solution stability in linear programming relaxations: graph partitioning and unsupervised learning. In: ICML (2009)

    Google Scholar 

  22. Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast planar correlation clustering for image segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_41

    Chapter  Google Scholar 

  23. Yarkony, J., Zhang, C., Fowlkes, C.C.: Hierarchical planar correlation clustering for cell segmentation. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 492–504. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14612-6_36

    Chapter  Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22, 888–905 (2000)

    Article  Google Scholar 

  25. Horňáková, A., Lange, J.H., Andres, B.: Analysis and optimization of graph decompositions by lifted multicuts. In: ICML (2017)

    Google Scholar 

  26. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 73 (2009)

    Google Scholar 

  27. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361, 172–187 (2006)

    Article  MathSciNet  Google Scholar 

  28. Kappes, J.H., et al.: A comparative study of modern inference techniques for structured discrete energy minimization problems. In: IJCV (2015)

    Google Scholar 

  29. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)

    Article  Google Scholar 

  30. Kappes, J., et al.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115, 155–184 (2015)

    Article  MathSciNet  Google Scholar 

  31. Cardona, A., et al.: An integrated micro- and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy. PLOS Biol. 8, 1–17 (2010)

    Article  Google Scholar 

  32. Carreras, I., et al.: Crowdsourcing the creation of image segmentation algorithms for connectomics. Frontiers Neuroanat. 9, 1–13 (2015)

    Google Scholar 

  33. Andres, B.: Lifting of multicuts. CoRR abs/1503.03791 (2015)

    Google Scholar 

  34. Meilă, M.: Comparing clusterings-an information based distance. J. Multivar. Anal. 98, 873–895 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the DFG project KE 2264/1-1. We also acknowledge the NVIDIA Corporation for the donation of a Titan Xp GPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Kardoost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kardoost, A., Keuper, M. (2019). Solving Minimum Cost Lifted Multicut Problems by Node Agglomeration. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics