Skip to main content

Chance and Causality in Ageing and Longevity

  • Chapter
  • First Online:
Centenarians

Abstract

The improvement of the quality of life of elderly people is going to become a priority because of the continuous increase in the number of oldest people. This renders the studies of the processes involved in longevity, a complex process influenced by several biological, environmental, and lifestyle factors as well as by chance, of critical importance. Centenarians have been proposed as a model of “positive biology” because they have reached the extreme limits of lifespan, avoiding or delaying major age-related diseases. The identification of the factors that predispose to long and healthy life is of tremendous interest for translational medicine. Here we briefly describe the results obtained so far and their meaning, focusing on the role of chance and causality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruby JG, Wright KM, Rand KA, Kermany A, Noto K, Curtis D, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210:1109–24.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Avery P, Barzilai N, Benetos A, Bilianou H, Capri M, Caruso C, et al. Ageing, longevity, exceptional longevity and related genetic and non genetic markers: panel statement. Curr Vasc Pharmacol. 2014;12:659–61.

    Article  CAS  PubMed  Google Scholar 

  3. Dong X, Milholland B, Vijg J. Evidence for a limit to human lifespan. Nature. 2016;538:257–9.

    Article  CAS  PubMed  Google Scholar 

  4. Barbi E, Lagona F, Marsili M, Vaupel JW, Wachter KW. The plateau of human mortality: demography of longevity pioneers. Science. 2018;360:1459–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gavrilov LA, Gavrilova NS. Season of birth and exceptional longevity: comparative study of American centenarians, their siblings, and spouses. J Aging Res. 2011;2011:104616.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Accardi G, Caruso C. Causality and chance in ageing, age-related diseases and longevity. In: Accardi G, Caruso C, editors. Updates in pathobiology: causality and chance in ageing, age-related diseases and longevity. Palermo University Press; 2017. p. 13–23.

    Google Scholar 

  7. Caruso C, Passarino G, Puca A, Scapagnini G. “Positive biology”: the centenarian lesson. Immun Ageing. 2012;9:5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Passarino G, De Rango F, Montesanto A. Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing. 2016;13:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lutz W, Kebede E. Education and health: redrawing the Preston curve. Popul Dev Rev. 2018;44:343–61.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. Lancet. 2009;374:1196–208.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Farrelly C. ‘Positive biology’ as a new paradigm for the medical sciences. Focusing on people who live long, happy, healthy lives might hold the key to improving human well-being. EMBO Rep. 2012;13:186–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luzzatto L, Pandolfi PP. Causality and chance in the development of cancer. N Engl J Med. 2015;373:84–8.

    Article  CAS  PubMed  Google Scholar 

  13. Monod J. Le hasard et la nécessité: Essai sur la philosophie naturelle de la biologie moderne, Éditions du Seuil, coll. Points Essais. 1970.

    Google Scholar 

  14. Kirkwood TB, Feder M, Finch CE, Franceschi C, Globerson A, Klingenberg CP, et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mech Ageing Dev. 2005;126:439–43.

    Article  PubMed  Google Scholar 

  15. Kirkwood TB. Understanding ageing from an evolutionary perspective. J Intern Med. 2008;263:117–27.

    Article  CAS  PubMed  Google Scholar 

  16. Kaern M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. 2005;6:451–64.

    Article  CAS  PubMed  Google Scholar 

  17. Losick R, Desplan C. Stochasticity and cell fate. Science. 2008;320:65–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beltrán-Sánchez H, Finch CE, Crimmins EM. Twentieth century surge of excess adult male mortality. Proc Natl Acad Sci U S A. 2015;112:8993–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Candore G, Balistreri CR, Colonna-Romano G, Lio D, Listì F, Vasto S, et al. Gender-related immune-inflammatory factors, age-related diseases, and longevity. Rejuvenation Res. 2010;13:292–7.

    Article  CAS  PubMed  Google Scholar 

  20. Vina J, Gambini J, Lopez-Grueso R, Abdelaziz KM, Jove M, Borras C. Females live longer than males: role of oxidative stress. Curr Pharm Des. 2011;17:3959–65.

    Article  CAS  PubMed  Google Scholar 

  21. Caruso C, Accardi G, Virruso C, Candore G. Sex, gender and immunosenescence: a key to understand the different lifespan between men and women? Immun Ageing. 2013;10:20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Caruso C, Vasto S. Immunity and aging. In: Ratcliffe MJH, editor. Encyclopedia of immunobiology, vol. 5. Oxford: Academic; 2016. p. 127–32.

    Chapter  Google Scholar 

  23. Accardi G, Caruso C. Immune-inflammatory responses in the elderly: an update. Immun Ageing. 2018;15:11.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Finch CE, Crimmins EM. Inflammatory exposure and historical changes in human life-spans. Science. 2004;305:1736–9.

    Article  CAS  PubMed  Google Scholar 

  25. Balistreri CR, Candore G, Caruso C. Role of TLR polymorphisms in aging and age-related diseases. In: Fulop T, Franceschi C, Hirokawa K, Pawelec G, editors. Handbook of immunosenescence. Cham: Springer; 2019. In press.

    Google Scholar 

  26. Licastro F, Candore G, Lio D, Porcellini E, Colonna-Romano G, Franceschi C, et al. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005;2:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Candore G, Caruso C, Jirillo E, Magrone T, Vasto S. Low grade inflammation as a common pathogenetic denominator in age-related diseases: novel drug targets for anti-ageing strategies and successful ageing achievement. Curr Pharm Des. 2010;16:584–96.

    Article  CAS  PubMed  Google Scholar 

  28. Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2015;2:1549–58.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Storci G, De Carolis S, Papi A, Bacalini MG, Gensous N, Marasco E, et al. Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians. Cell Death Differ. 2019. https://doi.org/10.1038/s41418-018-0255-8.

  30. De la Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflammaging. Curr Pharm Des. 2009;15:3003–26.

    Article  PubMed  Google Scholar 

  31. Biswas SK. Does the Interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Med Cell Longev. 2016;2016:5698931.

    Article  CAS  Google Scholar 

  32. Barja G. Rate of generation of oxidative stress-related damage and animal longevity. Free Radic Biol Med. 2002;33:1167–72.

    Article  CAS  PubMed  Google Scholar 

  33. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med. 2002;33:575–86.

    Article  CAS  PubMed  Google Scholar 

  34. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY). 2016;8:3–11.

    Article  CAS  Google Scholar 

  36. Rizvi SI, Maurya PK. Alterations in antioxidant enzymes during aging in humans. Mol Biotechnol. 2007;37:58–61.

    Article  CAS  PubMed  Google Scholar 

  37. Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010;48:1121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marinin F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40:595–603.

    Article  CAS  Google Scholar 

  39. Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, de Haan JB. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol. 2018;9:114.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of beginning). Free Radic Res. 1999;31:261–72.

    Article  CAS  PubMed  Google Scholar 

  41. Paolisso G, Barbieri M, Bonafè M, Franceschi C. Metabolic age modelling: the lesson from centenarians. Eur J Clin Invest. 2000;30:888–94.

    Article  CAS  PubMed  Google Scholar 

  42. Mecocci P, Polidori MC, Troiano L, Cherubini A, Cecchetti R, Pini G, et al. Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med. 2000;28:1243–8. Erratum in: Free Radic Biol Med. 2000;29:486.

    Article  CAS  PubMed  Google Scholar 

  43. Polidori MC, Mariani E, Baggio G, Deiana L, Carru C, Pes GM, et al. Different antioxidant profiles in Italian centenarians: the Sardinian peculiarity. Eur J Clin Nutr. 2007;61:922–4.

    Article  CAS  PubMed  Google Scholar 

  44. Cevenini E, Caruso C, Candore G, Capri M, Nuzzo D, Duro G, et al. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des. 2010;16:609–18.

    Article  CAS  PubMed  Google Scholar 

  45. Vasto S, Buscemi S, Barera A, Di Carlo M, Accardi G, Caruso C. Mediterranean diet and healthy ageing: a Sicilian perspective. Gerontology. 2014;60:508–18.

    Article  CAS  PubMed  Google Scholar 

  46. Aiello A, Accardi G, Candore G, Gambino CM, Mirisola M, Taormina G, et al. Nutrient sensing pathways as therapeutic targets for healthy ageing. Expert Opin Ther Targets. 2017;21:371–80.

    Article  CAS  PubMed  Google Scholar 

  47. Leonardi GC, Accardi G, Monastero R, Nicoletti F, Libra M. Ageing: from inflammation to cancer. Immun Ageing. 2018;15:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dato S, Crocco P, D’Aquila P, de Rango F, Bellizzi D, Rose G, et al. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci. 2013;14:16443–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, et al. Interventions to slow aging in humans: are we ready? Aging Cell. 2015;14:497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Partridge L. The new biology of ageing. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365:147–54.

    Article  Google Scholar 

  51. Fontana L, Kennedy BK, Longo VD, Seals D, Melov S. Medical research: treat ageing. Nature. 2014;511:405–7.

    Article  CAS  PubMed  Google Scholar 

  52. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Soultoukis GA, Partridge L. Dietary protein, metabolism, and aging. Annu Rev Biochem. 2016;85:5–34.

    Article  CAS  PubMed  Google Scholar 

  54. Blumenthal HT. The aging-disease dichotomy: true or false? J Gerontol A Biol Sci Med Sci. 2003;58:138–45.

    Article  PubMed  Google Scholar 

  55. Schumacher B, van der Pluijm I, Moorhouse MJ, Kosteas T, Robinson AR, Suh Y, et al. Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet. 2008;4:e1000161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH. DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol. 2008;10:1241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Di Bona D, Accardi G, Virruso C, Candore G. Caruso l. Association between genetic variations in the insulin/insulin-like growth factor (Igf-1) signaling pathway and longevity: a systematic review and meta-analysis. Curr Vasc Pharmacol. 2014;12:674–81.

    Article  CAS  PubMed  Google Scholar 

  59. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47:R1–10.

    Article  CAS  PubMed  Google Scholar 

  60. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wątroba M, Szukiewicz D. The role of sirtuins in aging and age related diseases. Adv Med Sci. 2016;61:52–62.

    Article  PubMed  Google Scholar 

  62. Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol. 2005;17:158–66.

    Article  CAS  PubMed  Google Scholar 

  63. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36:1811–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Puca AA, Spinelli C, Accardi G, Villa F, Caruso C. Centenarians as a model to discover genetic and epigenetic signatures of healthy ageing. Mech Ageing Dev. 2018;174:95–102.

    Article  PubMed  Google Scholar 

  65. Accardi G, Aprile S, Candore G, Caruso C, Cusimano R, Cristaldi L, et al. Genotypic and phenotypic aspects of longevity: results from a Sicilian survey and implication for the prevention and the treatment of age-related diseases. Curr Pharm Des. 2019;25:228–35.

    Article  CAS  PubMed  Google Scholar 

  66. Aiello A, Accardi G, Candore G, Carruba G, Davinelli S, Passarino G, et al. Nutrigerontology: a key for achieving successful ageing and longevity. Immun Ageing. 2016;13:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Aiello A, Caruso C, Accardi G. Slow-aging diets. In: Danan G, Matthew Dupre E, editors. Encyclopedia of gerontology and population aging. Springer; 2019. In press. https://doi.org/10.1007/978-3-319-69892-2_134-1.

    Google Scholar 

  68. Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab. 2014;25:55866.

    Article  CAS  Google Scholar 

  69. Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328:321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45.

    Article  PubMed  Google Scholar 

  71. Speakman JR, Mitchell SE. Caloric restriction. Mol Asp Med. 2011;32:159–221.

    Article  CAS  Google Scholar 

  72. Redman LM, Kraus WE, Bhapkar M, Das SK, Racette SB, Martin CK, et al. Energy requirements in nonobese men and women: results from CALERIE. Am J Clin Nutr. 2014;99:71–8.

    Article  CAS  PubMed  Google Scholar 

  73. Rakowski W, Mor V. The association of physical activity with mortality among older adults in the Longitudinal Study of Aging (1984-1988). J Gerontol. 1992;47:M122–9.

    Article  CAS  PubMed  Google Scholar 

  74. Warburton DER, Charlesworth S, Ivey A, Nettlefold L, Bredin SSD. A systematic review of the evidence for Canada’s Physical Activity Guidelines for Adults. Int J Behav Nutr Phys Act. 2010;7:39.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol. 2011;40:1382–400.

    Article  PubMed  Google Scholar 

  76. Reimers CD, Knapp G, Reimers AK. Does physical activity increase life expectancy? A review of the literature. J Aging Res. 2012;2012:243958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015;18:57–89.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, et al. Aging hallmarks: the benefits of physical exercise. Front Endocrinol (Lausanne). 2018;9:258.

    Article  Google Scholar 

  80. Radák Z, Naito H, Kaneko T, Tahara S, Nakamoto H, Takahashi R, et al. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflügers Arch. 2002;445:273–8.

    Article  PubMed  CAS  Google Scholar 

  81. Gomez-Cabrera M-C, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44:126–31.

    Article  CAS  PubMed  Google Scholar 

  82. Leick L, Lyngby SS, Wojtasewski JF, Pilegaard H. PGC-1α is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle. Exp Gerontol. 2010;45:336–42.

    Article  CAS  PubMed  Google Scholar 

  83. Puterman E, Lin J, Blackburn E, O’Donovan A, Adler N, Epel E. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010;5:e10837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, et al. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics. 2017;18:802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;588:4795–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31:671–5.

    Article  CAS  PubMed  Google Scholar 

  87. Kim YA, Kim YS, Oh SL, Kim H-J, Song W. Autophagic response to exercise training in skeletal muscle with age. J Physiol Biochem. 2013;69:697–705.

    Article  CAS  PubMed  Google Scholar 

  88. Yarasheski KE, Pak-Loduca J, Hasten DL, Obert KA, Brown MB, Sinacore DR. Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men ≥ 76 yr old. Am J Physiol Endocrinol Metab. 1999;277:E118–25.

    Article  CAS  Google Scholar 

  89. Woods JA, Wilund KR, Martin SA, Kistler BM. Exercise, inflammation and aging. Aging Dis. 2012;3:130–40.

    PubMed  Google Scholar 

  90. Kokkinos P, Sheriff H, Kheirbek R. Physical inactivity and mortality risk. Cardiol Res Pract. 2011;2011:924945.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wade KH, Richmond RC, Davey Smith G. Physical activity and longevity: how to move closer to causal inference. Br J Sports Med. 2018;52:890–1.

    Article  PubMed  Google Scholar 

  92. Kujala UM. Is physical activity a cause of longevity? It is not as straightforward as some would believe. A critical analysis. Br J Sports Med. 2018;52:914–8.

    Article  PubMed  Google Scholar 

  93. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ. Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci U S A. 2007;104:11483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gard T, Hölzel BK, Lazar SW. The potential effects of meditation on age-related cognitive decline: a systematic review. Ann N Y Acad Sci. 2014;1307:89–103.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sharma H. Meditation: process and effects. Ayu. 2015;36:233–7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rosenkranz MA, Lutz A, Perlman DM, Bachhuber DR, Schuyler BS, MacCoon DG, et al. Reduced stress and inflammatory responsiveness in experienced meditators compared to a matched healthy control group. Psychoneuroendocrinology. 2016;68:117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Epel E, Blackburn E, Lin J, Dhabhar F, Adler N, Morrow JD, et al. Accelerated telomere shortening in response to exposure to life stress. Proc Natl Acad Sci U S A. 2004;101:17312–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bakaysa SL, Mucci LA, Slagboom E, Boomsma DI, McClearn GE, Johansson B, et al. Telomere length predicts survival independent of genetic influences. Aging Cell. 2007;6:769–74.

    Article  CAS  PubMed  Google Scholar 

  99. Damjanovic AK, Yang Y, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol. 2007;179:4249–54.

    Article  CAS  PubMed  Google Scholar 

  100. Hathcock KS, Chiang Y, Hodes RJ. In vivo regulation of telomerase activity and telomere length. Immunol Rev. 2005;205:104–13.

    Article  CAS  PubMed  Google Scholar 

  101. Calabrese J, Baldwin LA. Defining hormesis. Hum Exp Toxicol. 2002;21:91–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calogero Caruso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Accardi, G., Aiello, A., Vasto, S., Caruso, C. (2019). Chance and Causality in Ageing and Longevity. In: Caruso, C. (eds) Centenarians. Springer, Cham. https://doi.org/10.1007/978-3-030-20762-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20762-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20761-8

  • Online ISBN: 978-3-030-20762-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics