Skip to main content

Congratulations! Dual Graphs Are Now Orientated!

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11510))

Abstract

A digital image can be perceived as a 2.5D surface consisting of pixel coordinates and the intensity of pixel as height of the point in the surface. Such surfaces can be efficiently represented by the pair of dual plane graphs: neighborhood (primal) graph and its dual. By defining orientation of edges in the primal graph and use of Local Binary Patters (LBPs), we can categorize the vertices corresponding to the pixel into critical (maximum, minimum, saddle) or slope points. Basic operation of contraction and removal of edges in primal graph result in configuration of graphs with different combinations of critical and non-critical points. The faces of graph resemble a slope region after restoration of the continuous surface by successive monotone cubic interpolation. In this paper, we define orientation of edges in the dual graph such that it remains consistent with the primal graph. Further we deliver the necessary and sufficient conditions for merging of two adjacent slope regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a topological and a combinatorial isomorphism between G and \(\overline{G}\) and it is a unique pair of graphs embedded in a surface [5, pp. 70-80].

  2. 2.

    Region with a non well-composed configuration which requires insertion of a saddle point [3].

  3. 3.

    This configuration can be achieved by switching positions of \(\oplus _i\) and \(\ominus _i\) in the previously mentioned configuration.

References

  1. Batavia, D., Kropatsch, W.G., Gonzalez-Diaz, R., Casblanca, R.M.: Counting slope regions in surface graphs. In: Computer Vision Winter Workshop (2019)

    Google Scholar 

  2. Cayley, A.: Xl. on contour and slope lines. London, Edinburgh, Dublin Philos. Mag. J. Sci. 18(120), 264–268 (1859)

    Google Scholar 

  3. Cerman, M., Gonzalez-Diaz, R., Kropatsch, W.: LBP and irregular graph pyramids. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 687–699. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23117-4_59

    Chapter  Google Scholar 

  4. Cerman, M., Janusch, I., Gonzalez-Diaz, R., Kropatsch, W.G.: Topology-based image segmentation using LBP pyramids. Mach. Vis. Appl. 27(8), 1161–1174 (2016)

    Article  Google Scholar 

  5. Diestel, R.: Graph Theory: Graduate Texts in Mathematics (1997)

    Google Scholar 

  6. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-smale complexes for piecewise linear 3-manifolds. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 361–370. ACM (2003)

    Google Scholar 

  7. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical morse-smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30(1), 87–107 (2003)

    Article  MathSciNet  Google Scholar 

  8. Kropatsch, W.G., Casablanca, R.M., Batavia, D., Gonzalez-Diaz, R.: Computing and reducing slope complexes. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds.) CTIC 2019. LNCS, vol. 11382, pp. 12–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10828-1_2

    Chapter  Google Scholar 

  9. Kropatsch W.G., Casablanca R.M., Batavia D., Gonzalez-Diaz, R.: On the space between critical points. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) Discrete Geometry for Computer Imagery. DGCI 2019. LNCS, vol. 11414, pp. 115–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_10

  10. Lee, R.N.: Two-dimensional critical point configuration graphs. IEEE Trans. Pattern Anal. Mach. Intell. 4, 442–450 (1984)

    Article  Google Scholar 

  11. Maxwell, J.C.: L. on hills and dales: to the editors of the philosophical magazine and journal. London, Edinburgh, Dublin Philos. Mag. J. Sci. 40(269), 421–427 (1870)

    Google Scholar 

  12. Wei, X., Yang, Q., Gong, Y., Ahuja, N., Yang, M.H.: Superpixel hierarchy. IEEE Trans. Image Process. 27(10), 4838–4849 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darshan Batavia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batavia, D., Kropatsch, W.G., Casablanca, R.M., Gonzalez-Diaz, R. (2019). Congratulations! Dual Graphs Are Now Orientated!. In: Conte, D., Ramel, JY., Foggia, P. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer Science(), vol 11510. Springer, Cham. https://doi.org/10.1007/978-3-030-20081-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20081-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20080-0

  • Online ISBN: 978-3-030-20081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics